
 A comparative study of history-based versus vectorized Monte Carlo
methods in the GPU/CUDA environment for a simple neutron

eigenvalue problem
Tianyu Liu1, Xining Du1, Wei Ji1, X. George Xu1*, Forrest B. Brown2

1Rensselaer Polytechnic Institute, Troy, New York, USA
2 Los Alamos National Laboratory, Los Alamos, NM, USA

* Corresponding Author, E-mail: xug2@rpi.edu

For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming

Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs).
However, traditional MC methods are often history-based, and their performance on GPUs is
affected significantly by the thread divergence problem. In this paper we describe the
development of a newly designed event-based vectorized MC algorithm for solving the neutron
eigenvalue problem. The code was implemented using NVIDIA’s Compute Unified Device
Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although
the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing
the warp execution efficiency, the overall simulation speed is roughly ten times slower than the
history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to
the memory access latency caused by the large amount of global memory transactions. Possible
solutions to improve the code efficiency are discussed.

KEYWORDS: Monte Carlo, vectorized, event based, parallel computing, GPU, CUDA

DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2014

/2014
 SNA + MC 2013, 0420

snamc 0420
 (2014)6

6

Article available at http://sna-and-mc-2013-proceedings.edpsciences.org or http://dx.doi.org/10.1051/snamc/201404206

http://sna-and-mc-2013-proceedings.edpsciences.org
http://dx.doi.org/10.1051/snamc/201404206

I. Introduction
Radiation transport problems are frequently encountered

in many applications including nuclear reactor analysis,
medical imaging and radiation therapy. It is widely believed
that Monte Carlo (MC) methods provide the most accurate
results for radiation transport and are capable of dealing with
complex geometry and physics models. However, MC
simulations are often very time-consuming due to the large
number of simulated histories required to reach satisfactory
statistical precision. Despite the fast development of modern
computers, it is still quite challenging to apply MC methods
in routine nuclear reactor and medical physics calculations
[1].

In recent years, graphics processing unit (GPU) and the
relevant programming framework, especially NVIDIA’s
Compute Unified Device Architecture (CUDA) toolkit, have
emerged as energy-efficient computing solutions and drawn
wide attention in the supercomputing community. GPUs
provide both tremendous computing power and the ease of
use in parallel computing. In particular, GPU is suitable for
applications with a large portion of work that can be carried
out in parallel by multiple working threads. MC simulations
are often embarrassingly parallel, meaning that individual
histories can be computed simultaneously without
communications between each other. It is thus natural to
expect that by running MC simulations on GPUs, one can
take advantage of the parallel computing power and reduce
the simulation time accordingly.

Several groups have made preliminary efforts in
developing GPU-based MC codes for neutron transport
simulations. Heimlich et al. [2] studied the penetration
probability of an incident neutron beam on a 1-D slab and
observed a speedup factor of 15. Nelson and Ivanov [3] used
more complex geometries and physics models to simulate
the neutron transport, and reported a speedup of 11. Ding et
al [4, 5] studied neutron eigenvalue problems using spherical
and binary slab geometries, and observed speedup factors of
7.0 and 33.3, respectively, on NVIDIA Fermi GPUs
compared to the same transport simulation running on CPUs.

In our previous work [4, 5], we developed the GPU-based
MC code for a simple neutron eigenvalue problem using the
history-based algorithms, where each thread on the GPU is
used to deal with the entire history of one or more particles
until they are absorbed or move out of the region of interest
(ROI). Our results showed that this strategy is practical and
the GPU-based code runs an order of magnitude faster than
the corresponding CPU code.

However, history-based MC methods suffer from the so-
called thread divergence issue on the GPU which can
deteriorate the computing performance: On NVIDIA Fermi
GPUs, every 32 threads are grouped into one warp, and the
same instructions are executed for all 32 threads within each
warp simultaneously. The result of this mechanism is that if
threads within a warp are following different control flow,
i.e. there are “if…else…” statements involved, then the
divergent code segment will be executed sequentially, and

this significantly reduces the parallel efficiency of the code.
Unfortunately this is exactly the case for MC simulations
where conditional statements are frequently used for event
sampling. One solution to this issue is to use the so-called
vectorized MC algorithms which can completely or partially
eliminate the thread divergence, therefore facilitating more
efficient GPU execution.

Vectorized MC algorithms were first developed in the
1980s, when Brown and Martin [6, 7, 8] implemented the
algorithm on vector computers, e.g. Cyber-205 and Cray-1,
and achieved great success. Today the commodity central
processing units (CPUs), albeit often equipped with some
vector components such as Streaming SIMD Extensions
(SSE), adopt the superscalar architecture and do not work
directly with the vectorized algorithm. On the contrary,
NVIDIA GPUs are designed based on the single instruction
multiple thread (SIMT) architecture [9], which has many
similarities to the single instruction multiple data (SIMD)
architecture of vector computers. While the hardware
implementation is very different, the programming logic is
nearly identical. It is thus speculated that previously
developed vectorized algorithms could benefit from this
hardware architecture and have the potential to run
efficiently on GPUs. However, SIMT is a hybrid between
vector processing and hardware threading while SIMD is
particularly designed for vector processing. There are still
substantial differences between these two architectures. As
such, significant amount of work is needed to adapt the
vectorized code to the GPU platform, making the study of
vectorized MC methods on GPUs a non-trivial work task. As
an early attempt, Bergmann et al. [10] investigated the
vectorized MC algorithm on GPUs by solving a fixed-source
problem in 2D geometry. They found that although the
vectorized algorithm improves thread coherency, it does not
outperform the conventional history-based algorithm on
GPUs. In this work, we extended previous investigation to
study vectorized algorithms for a different neutron transport
problem, namely an eigenvalue problem in slab geometry.

This paper describes the use of ARCHER to analyze the
performance of vectorized MC methods under the
GPU/CUDA environment. We describe the code
implementation and comparison of the performance of
vectorized MC algorithms to that of the history-based
algorithms in the GPU environment. This work is part of the
project ARCHER (Accelerated Radiation-transport
Computations in Heterogeneous EnviRonments) [11], which
is designed as a comprehensive Monte Carlo software
testbed using novel hardware and advanced programming
models to speed up Monte Carlo calculations. Currently we
employ ARCHER as a versatile research tool to evaluate the
performance of Nvidia’s GPU and Intel’s coprocessor. In the
long term, we envision ARCHER to be a suite of MC codes
with the capability to gracefully scale on the exa-scale
supercomputers. Figures 1 shows the design and long term
vision of ARCHER.

 Web of Conferences

04206-p.2

Fi
as
of
co
Op
AR
re

II

2.1

im
ge
the
is
su
cri

sim
sp
alw
len
ge

2.2

In
ne
an
sa
to
rea
co
Ot
sa
me

W
me

igure 1: The v
s a research to
f hardware pl
oprocessors. D
penMP, CUD
RCHER can

eactor analysi

. Method

1 Neutron tra
The accura

mportant in nu
enerally achie
e reactor syst
defined as th

uccessive fissi
iticality as a fu

During MC
mulated using

plitting techniq
ways has an a
ngth estimator
eneration.

2. Vectorized

MC simulatio
eutron will go
nalysis and the
mple the neut
a new positio
ached the med

ollision analys
therwise we c
mpled distanc
edium interfac

We implemente
ethod develop

vision of ARC
ool to study M
latforms inclu
Different soft
DA, etc. have
be used in a
is to radiothe

ansport
ate prediction
uclear reacto

eved by solvi
tem under ana
he ratio of ne
on generation

function of geo

C simulation, t
g non-analog m
que is employ
appropriate we
rs are used to

d Monte Carl

ons for neutro
through two d

e collision ana
tron transport
on. Then we ch
dium interface
sis and update
ontinue to do

ce is less than
ce.

ed the vectoriz
ped by Brown

CHER. ARCH
MC simulatio
uding CPUs,
tware tools in

been used in
variety of are

erapy and hea

of multiplica
r design and
ng a k-eigenv
alysis. The m
eutron populat
ns. It directly
ometry and m

the absorption
method. Russi
ed to ensure th
eight value. Co
evaluate eigen

o Method

on eigenvalue
different proc
alysis. In the f
distance and m
heck whether
e. If not, we p
the weight of
another flight
the minimum

zed MC algori
[6] for Cray v

HER is desig
ons on a varie
GPUs and

ncluding MPI
n the develop
eas ranging f
alth physics.

ation factor is
d analysis. Th
value problem

multiplication f
tions between
reflects the sy

material.

n process is
ian roulette an
hat the neutro
ollision and p
nvalues in eac

problem, each
esses: the flig

flight analysis,
move the part
the neutron h
erform the

f the particle.
t analysis unti

m distance to

ithm followin
vector comput

gned
ety

I,
ment.

from

 very
his is
m for
factor
n two
ystem

nd
on
ath-
ch

h
ght
, we
ticle
has

il the

g the
ters.

A sim
in Fi
stori
One
unde
to sto
the b
and p
dista
cross
later
inter
stack
until
exec
shuff
that
colli
critic
samp
loop

Figu
MC

By d
neutr
the s
instr
impl
more
exec
does
in a s

mplified flow
igure 2. The b
ng the neutron
stack, called F

ergo the flight
ore neutrons t
beginning, we
perform the fl

ance sampling
sing medium i
collision anal

rfaces will mo
k for another f
l the F stack is
cuted for all ne
ffling operation
are out of RO
sion analysis.
cal value after
pling process.
of analysis.

ure 2: Simpli
algorithm im

doing these ite
rons being pro
same physical
ructions. This
lemented on G
e particles, all
cuting the sam
s not occur. Di
sequential ord

chart of the v
asic idea it to
ns being simu
F, is used to s
t analysis. The
that will under
put all the ini

light analysis
g, those neutro
interfaces wil
lysis, and thos

ove to the inter
flight analysis
s empty, when
eutrons in the
n is applied to

OI and only kee
 Neutrons wi
r collision will
 The survived

ified flowcha
mplemented in

erative operati
ocessed at the
events and in
means that on

GPUs with eac
l of the 32 thre

me instructions
ifferent events
der until the st

vectorized algo
keep two par

ulated in the cu
store neutrons
e other one, ca
rgo the collisi
itial neutrons
for all the neu

ons that will tr
l be stored in
se that travel a
rface position
s. This process
n the collision
C stack. At th

o stack C to re
ep survived on
ith weight valu
l be removed
d neutrons the

rt of GPU-b
n ARCHER.

ons, we guara
 same time ar

nvolving the sa
nce the method
ch thread simu
eads within a w
s and the threa
s are then exe
torage stack b

orithm is show
rticle stacks fo
urrent batch.
that will

alled C, is used
on analysis. In
into the F stac

utrons. After
ravel without
the C stack fo
across medium
and stay in F

s is repeated
 analysis is
his point, a
emove neutron
nes for the
ues below som
following a

en enter the ne

ased vectoriz

antee that all th
re undergoing
ame sequence
d is
ulating one or
warp will be

ad divergence
cuted iterative
ecomes empty

wn
or

d
n
ck,

or
m

ns

me

ext

zed

he

e of

ely
y.

SNA + MC 2013

04206-p.3

Note that with the event-based method, there is no one-to-
one correspondence between the particle history and GPU
thread, since different portions of one particle history may be
executed by different threads for the events within that
history.

2.3 GPU Implementation

We first developed a pure CPU code written in C, then
ported the parallelizable modules (initialization of random
numbers and fission sites, tracking of all neutron histories in
a certain batch, etc.) of the code into ARCHERGPU using
CUDA C[9]. Two different MC algorithms, both the history-
based and event-based, were implemented on GPU, thus we
have two versions of ARCHERGPU code.

We used Xorshift [12] pseudo random number generator
(PRNG) for generating fast and high quality random
numbers on the GPU. This PRNG algorithm is included in
the CURAND library [13] provided by the CUDA kit, so it
requires minimal development effort. Thrust library [14] was
used to perform the shuffling operation, which is a key step
in the vectorized MC algorithm.

Local variables including collision and path-length
estimators were put on registers for fast access. Shared
memory was used to store the partial sums of collision/path-
length estimators for all of the threads within a block, which
were then used to calculate the full sum by using the
reduction technique. The neutron cross section data and
geometrical parameters are shared by all of the threads and
their values are not changed throughout the entire
simulation, so these data were put in constant memory. Two
neutron stacks storing the status data of neutrons were stored
in global memory.

One change we made from the previous work is the usage of
page-locked memories on the CPU side. We found that
overuse of the page-lock memory could lead to a bandwidth
bottleneck for a multi-GPU system, so in the vectorized MC
code, we store all the intermediate data in the global memory
on the device. The same change was made to our previously
developed MC code, and test results were re-made by using
the code after modification. This explains why the speedup
factors of history-based MC algorithm shown in this paper
are different from those in our previous paper [5].

The kernel block size was set to be 256, and the number of
neutrons simulated by each thread was 100. The grid size
was then determined by dividing the total number of
neutrons to be handled for the current kernel by 25,600. The
values of these parameters were chosen so that the GPU
code performance was optimum for our particular setup.

III. Applications and Results

In this study, we considered a heterogeneous 1-D
system that consists of alternately distributed fuel and
moderator slabs. A total of 10 fuel slabs and 11 moderator

slabs are modeled. For simplicity we use the one speed
approximation in our MC implementation. Three physical
processes, elastic scattering, fission and capture, are being
considered for each neutron history in the simulations, where
the last two are regarded as absorption. The cross sections of
each reaction are set such that the resulting eigenvalue is
close to one. Specifically, we use F=0.034 cm-1, A=0.08
cm-1, T=0.1 cm-1, =2.5, x=3.8 cm for the fuel, and

A=0.0001 cm-1, T=0.1 cm-1, x=30.0 cm for the
moderator. The parameters were assigned such that the
eigenvalues would finally be close to 1.

A total of 106 initial neutron histories and 1000
generations (the first 200 are inactive) were simulated by the
CPU and GPU codes, respectively, to achieve convergence
of eigenvalue and fission source distribution. Double
precision floating point arithmetic was used for guaranteeing
the computation precision.

For the performance benchmark, we used a work-station
equipped with an Intel Xeon X5650 2.66GHz CPU and a
NVIDIA Tesla M2090 GPU card with 6GB global memory.
Three versions of the code were tested: ARCHERCPU was
run in serial mode using a single thread on the CPU, while
history-based ARCHERGPU and vectorized ARCHERGPU
were run on the GPU card.

In Table 1, we show the running time of three different
codes and the speed up factors relative to the CPU code.

Code
Computation

time [sec]
Speedup

ARCHERCPU 6077.5 1
ARCHERGPU

(history-based)
208.1 29.2

ARCHERGPU

(vectorized)
2278.9 2.7

Table 1. Performance comparison between different
transport codes in ARCHER.

The GPU-based vectorized Monte Carlo code, ARCHERGPU
(vectorized), was found to be slower than its conventional
GPU counterpart, ARCHERGPU (history-based), by a factor
over 10. To find out the cause of the downgraded
performance, the GPU execution statistics per neutron
generation were collected and analyzed by using a profiling
tool NVPROF [15]. In Figure 8 we show the control flow
efficiency of each kernel function for the history-based and
vectorized algorithm. Control flow efficiency, defined as

Control flow efficiency = {Thread Instructions Executed} /
{Instructions Executed} / {Warps Size},

is a measure of how many threads are active for each
instruction. In the ideal case when all the threads within a
warp execute the same instruction, this number will be 100%.
The more the thread divergence occurs, the lower this
number is. From Figure 3, it can be seen that overall the

 Web of Conferences

04206-p.4

control flow efficiency is 2-3 times higher for vectorized
MC kernel functions compared with the history-based MC
kernels. This means that the occurrence of thread divergence
is significantly reduced in vectorized GPU-based MC codes.

Figure 3: Control flow efficiency of kernel functions.
Magenta and navy bars represent the data for history-
based and vectorized ARCHERGPU codes, respectively.
Numbers in the square brackets denote kernel launch
times.

However, the advantage of higher control flow efficiency is
completely offset by the highly increased global memory
transaction, as is illustrated in Figure 4. Unlike in the
conventional code where neutron attribution data such as
position, direction, energy, weight, etc. are created and
consumed in the fast on-chip registers, in the vectorized code,
they have to be frequently read from and written to the slow
off-chip global memory, which is known to have high access
latency. For the neutron eigenvalue problem considered in
this study, the total global memory throughput per neutron
generation of the vectorized code is on the order of 200 GB,
which is ~60 times larger than that of the conventional code.
The dramatically increased number of global memory
transactions causes large amount of latencies on the GPU
and makes the vectorized MC code much slower than the
conventional one, although the former gives much better
control flow efficiency.

Figure 4: Global memory throughput of kernel functions.

Magnetic and navy bars represent the data for history-
based and vectorized ARCHERGPU codes, respectively.
Number in the square bracket denotes the kernel launch
times.

Based on the test runs and profiling results, we can draw the
preliminary conclusion that vectorized MC algorithm is
probably not well suited for running on modern GPUs. The
main reason is the high latency of global memory access
associated with the vectorized algorithm deteriorates the
GPU performance. Frequent memory reading/writing is to a
large extent intrinsic to the vectorized algorithm, so latency
is most likely to continue to be a major issue for any effort
of porting vectorized MC code to GPUs.

There are techniques that can be used to possibly alleviate
the global memory latency problem and they will be
investigated in our future studies:

1. In the flight analysis step, we keep executing the flight
kernel until all of the neutrons enter the collision stack. As
this process goes, the number of active neutrons simulated in
the flight kernel is continuing to decrease and it could be
well below one million for the last several flight kernel
executions. In our GPU code, we always use a block size of
256 and let each thread simulate 100 neutrons, so if the total
number of neutrons is only, say, tens of thousands, there are
merely several hundred active threads for the GPU and they
are much less than the maximal active concurrent threads on
the Tesla M2090 card, which is 24576. The stream
processors (SM) in GPU are not fully occupied, resulting in
a very low efficient GPU usage. One possible solution is to
adjust the block size and the number of neutrons per thread
dynamically according to the current total number of
neutrons being simulated to guarantee enough number of
concurrent threads. Another way to improve the GPU
occupancy is to use stack-driven vectorized MC, where one
always chooses the stack with the largest number of particles
to process. This technique can avoid the kernel launch for
events with relatively small size stacks and therefore reduce
the possibilities of inefficient GPU kernel executions.

2. Because the vectorized algorithms are effective in
reducing thread divergence, it may be beneficial to address
the global memory access problem directly. There are many
“tried and true” programming techniques to hide the
latencies for memory access, and some of those techniques
may be useful for GPUs. For example, having several stacks
for both free-flight and collision operations may permit
fetching one stack from memory while the GPUs are
operating on another stack. Techniques such as prefetching,
read-ahead / write-behind, asynchronous access, etc., have
proven effective for conventional CPUs and may be
effective in latency hiding for the GPU global memory
access. These programming techniques, however, further
complicate the Monte Carlo algorithms and may be highly
dependent on relative speeds of specific hardware.

IV. CONCLUSIONS

0 10 20 30 40 50 60

Transport [1]

UpdatePositionBankCollisionWeightWindow
[219]

InitializeDirection [218]

GetNewCellInfoAndCheckKilling [794]

CheckOutOfROI [219]

CalculateDMinAndSampleDistance [1006]

control flow efficiency [%]

0 20 40 60 80 100

Transport [1]

UpdatePositionBankCollisionWeightWindow [219]

InitializeDirection [218]

GetNewCellInfoAndCheckKilling [794]

CheckOutOfROI [219]

CalculateDMinAndSampleDistance [1006]

global memory transaction [GB]

SNA + MC 2013

04206-p.5

In this work, we have used the ARCHER testbed to
investigate the performance of vectorized MC methods in
the GPU/CUDA environment. We applied the vectorized
MC method to a neutron eigenvalue problem and compared
its performance with the conventional MC method on GPUs
as well as those on CPUs. We found that the vectorized MC
code indeed reduced the occurrence of thread divergence,
which is known as a challenge in running MC simulations
efficiently on GPU’s SIMT architecture, and greatly
increased the control flow efficiency. However, we also
found that the new algorithm was actually ten times slower
than the conventional MC algorithm on GPUs, mainly due to
the increased number of global memory transactions. Our
preliminary conclusion is that the vectorized MC algorithm,
as implemented in this study, is not well suited for GPUs.
We are currently testing other hardware designs including
the Intel Xeon Phi coprocessor. We then proposed several
directions in which further work can be done to enhance the
performance of vectorized algorithm: (1) more flexible
arrangement of block size and thread working load, (2) the
hybrid algorithm combining both history-based and event-
based MC methods, and (3) programming techniques to hide
memory latency by overlapping computations with memory
access. These future works, once done, should provide more
insight into the role of vectorized MC algorithm in future
peta-scale and exa-scale high performance computers.

Acknowledgment
This work was funded in part by the grant from National
Institute of Biomedical Imaging and Bioengineering
(R01EB015478).

References

1. Pratx G and Xing L, “GPU computing in medical
physics: a review”, Med. Phys. 38 2685–97 (2012).

2. A. Heimlich, A. C. A. Mol, C. M. N. A. Pereira, “GPU-
Based High Performance Monte Carlo Simulation in
Neutron Transport and finite differences heat equation
evaluation”, 2009 International Nuclear Atlantic
Conference, Rio de Janeiro, RJ, Brazil, September 27-
October 2, 2009 (2009).

3. A. G. Nelson, K. N. Ivanov, “Monte Carlo methods for
neutron transport on graphics processing units using
CUDA”, PHYSOR 2010 – Advances in Reactor Physics
to Power the Nuclear Renaissance, Pittsburgh,
Pennsylvania, USA, May 9-14, 2010 (2010).

4. A. Ding, T. Liu, C. Liang, W. Ji, M. S. Shephard, X. G.
Xu, F. B. Brown. “Evaluation of speedup of Monte
Carlo calculations of simple reactor physics problems
coded for the GPU/CUDA environment”, ANS
Mathematics & Computation Topical Meeting, Rio de
Janeiro, RJ, Brazil, May 8-12, 2011(2011).

5. T. Liu, A. Ding, W. Ji, X. G. Xu, C. D. Carothers, F. B.
Brown, “A Monte Carlo neutron transport code for
eigenvalue calculations on a dual-GPU system and
CUDA environment”, Physor 2012 Advances in Reactor
Physics, Knoxville, TN, USA, April 15-20, 2012.

6. F. B. Brown, W. R. Martin, “Monte Carlo methods for
radiation transport analysis on vector computers”,

Progress in Nuclear Energy, Vol. 14, No. 3, pp. 269-299
(1984).

7. W. R. Martin, F. B. Brown, “Status of vectorized Monte
Carlo for particle transport analysis”, The International
Journal of Supercomputer Applications, Vol. 1, No. 2,
pp. 11-32 (1987).

8. W. R. Martin, “Successful vectorization-reactor physics
Monte Carlo code”, Computer Physics
Communications, Vol. 57, No. 1-3, pp. 68-77 (1989).

9. “CUDA C programming guide”,
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, NVIDIA (2013).

10. R. M. Bergmann, J. L. Vujic, N. A. Fischer, “2D Mono-
Energetic Monte Carlo Particle Transport on a GPU”,
ANS Winter Meeting Transactions, November 2012.

11. X.G. Xu, T. Liu, L. Su, X. Du, M.J. Riblett, W. Ji. “An
Update of ARCHER, a Monte Carlo Radiation
Transport Software Testbed for Emerging Hardware
Such as GPUs”. 2013 American Nuclear Society Annual
Meeting, Atlanta, GA, June 16-20, 2013.

12. M. Matsumoto and T. Nishimura, “Mersenne Twister: A
623-dimensionally equidistributed uniform
pseudorandom number generator”, ACM Trans. on
Modeling and Computer Simulation Vol. 8, No. 1,
January pp.3-30 (1998).

13. “CUDA Toolkit 5.5 CURAND Guide”, NVIDIA
(2013).

14. “CUDA Toolkit 5.5 Thrust Guide”,
http://docs.nvidia.com/cuda/thrust/index.html, NVIDIA
(2013).

15. “Profiler User’s Guide”, NVIDIA (2013).

 Web of Conferences

04206-p.6

