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For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming
Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs).
However, traditional MC methods are often history-based, and their performance on GPUs is
affected significantly by the thread divergence problem. In this paper we describe the
development of a newly designed event-based vectorized MC algorithm for solving the neutron
eigenvalue problem. The code was implemented using NVIDIA’s Compute Unified Device
Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although
the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing
the warp execution efficiency, the overall simulation speed is roughly ten times slower than the
history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to
the memory access latency caused by the large amount of global memory transactions. Possible
solutions to improve the code efficiency are discussed.
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I. Introduction

Radiation transport problems are frequently encountered
in many applications including nuclear reactor analysis,
medical imaging and radiation therapy. It is widely believed
that Monte Carlo (MC) methods provide the most accurate
results for radiation transport and are capable of dealing with
complex geometry and physics models. However, MC
simulations are often very time-consuming due to the large
number of simulated histories required to reach satisfactory
statistical precision. Despite the fast development of modern
computers, it is still quite challenging to apply MC methods
in routine nuclear reactor and medical physics calculations

[1].

In recent years, graphics processing unit (GPU) and the
relevant programming framework, especially NVIDIA’s
Compute Unified Device Architecture (CUDA) toolkit, have
emerged as energy-efficient computing solutions and drawn
wide attention in the supercomputing community. GPUs
provide both tremendous computing power and the ease of
use in parallel computing. In particular, GPU is suitable for
applications with a large portion of work that can be carried
out in parallel by multiple working threads. MC simulations
are often embarrassingly parallel, meaning that individual
histories can be computed simultaneously without
communications between each other. It is thus natural to
expect that by running MC simulations on GPUs, one can
take advantage of the parallel computing power and reduce
the simulation time accordingly.

Several groups have made preliminary efforts in
developing GPU-based MC codes for neutron transport
simulations. Heimlich et al. [2] studied the penetration
probability of an incident neutron beam on a 1-D slab and
observed a speedup factor of 15. Nelson and Ivanov [3] used
more complex geometries and physics models to simulate
the neutron transport, and reported a speedup of 11. Ding et
al [4, 5] studied neutron eigenvalue problems using spherical
and binary slab geometries, and observed speedup factors of
7.0 and 33.3, respectively, on NVIDIA Fermi GPUs
compared to the same transport simulation running on CPUs.

In our previous work [4, 5], we developed the GPU-based
MC code for a simple neutron eigenvalue problem using the
history-based algorithms, where each thread on the GPU is
used to deal with the entire history of one or more particles
until they are absorbed or move out of the region of interest
(ROI). Our results showed that this strategy is practical and
the GPU-based code runs an order of magnitude faster than
the corresponding CPU code.

However, history-based MC methods suffer from the so-
called thread divergence issue on the GPU which can
deteriorate the computing performance: On NVIDIA Fermi
GPUgs, every 32 threads are grouped into one warp, and the
same instructions are executed for all 32 threads within each
warp simultaneously. The result of this mechanism is that if
threads within a warp are following different control flow,
i.e. there are “if...else...” statements involved, then the
divergent code segment will be executed sequentially, and

this significantly reduces the parallel efficiency of the code.
Unfortunately this is exactly the case for MC simulations
where conditional statements are frequently used for event
sampling. One solution to this issue is to use the so-called
vectorized MC algorithms which can completely or partially
eliminate the thread divergence, therefore facilitating more
efficient GPU execution.

Vectorized MC algorithms were first developed in the
1980s, when Brown and Martin [6, 7, 8] implemented the
algorithm on vector computers, e.g. Cyber-205 and Cray-1,
and achieved great success. Today the commodity central
processing units (CPUs), albeit often equipped with some
vector components such as Streaming SIMD Extensions
(SSE), adopt the superscalar architecture and do not work
directly with the vectorized algorithm. On the contrary,
NVIDIA GPUs are designed based on the single instruction
multiple thread (SIMT) architecture [9], which has many
similarities to the single instruction multiple data (SIMD)
architecture of vector computers. While the hardware
implementation is very different, the programming logic is
nearly identical. It is thus speculated that previously
developed vectorized algorithms could benefit from this
hardware architecture and have the potential to run
efficiently on GPUs. However, SIMT is a hybrid between
vector processing and hardware threading while SIMD is
particularly designed for vector processing. There are still
substantial differences between these two architectures. As
such, significant amount of work is needed to adapt the
vectorized code to the GPU platform, making the study of
vectorized MC methods on GPUs a non-trivial work task. As
an early attempt, Bergmann et al. [10] investigated the
vectorized MC algorithm on GPUs by solving a fixed-source
problem in 2D geometry. They found that although the
vectorized algorithm improves thread coherency, it does not
outperform the conventional history-based algorithm on
GPUs. In this work, we extended previous investigation to
study vectorized algorithms for a different neutron transport
problem, namely an eigenvalue problem in slab geometry.

This paper describes the use of ARCHER to analyze the
performance of vectorize<d MC methods under the
GPU/CUDA  environment. We describe the code
implementation and comparison of the performance of
vectorized MC algorithms to that of the history-based
algorithms in the GPU environment. This work is part of the
project ARCHER  (Accelerated  Radiation-transport
Computations in Heterogeneous EnviRonments) [11], which
is designed as a comprehensive Monte Carlo software
testbed using novel hardware and advanced programming
models to speed up Monte Carlo calculations. Currently we
employ ARCHER as a versatile research tool to evaluate the
performance of Nvidia’s GPU and Intel’s coprocessor. In the
long term, we envision ARCHER to be a suite of MC codes
with the capability to gracefully scale on the exa-scale
supercomputers. Figures 1 shows the design and long term
vision of ARCHER.
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Software
MPI-OpenMP, MPI-Pthreads
CUDA, OpenACC
OpenCL
Offload-OpenMP, Cilk Plus

]
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Application
Reactor Analysis
CTlmaging
Radiotherapy
Shielding design

L

Hardware
Intel/AMD multi-core CPU
NVIDIA Fermi/Kepler GPU
AMD GCN GPU
Intel MIC coprocessor

Figure 1: The vision of ARCHER. ARCHER is designed
as a research tool to study MC simulations on a variety
of hardware platforms including CPUs, GPUs and
coprocessors. Different software tools including MPI,

OpenMP, CUDA, etc. have been used in the development.

ARCHER can be used in a variety of areas ranging from
reactor analysis to radiotherapy and health physics.

II. Method

2.1 Neutron transport

The accurate prediction of multiplication factor is very
important in nuclear reactor design and analysis. This is
generally achieved by solving a k-eigenvalue problem for
the reactor system under analysis. The multiplication factor
is defined as the ratio of neutron populations between two
successive fission generations. It directly reflects the system
criticality as a function of geometry and material.

During MC simulation, the absorption process is
simulated using non-analog method. Russian roulette and
splitting technique is employed to ensure that the neutron
always has an appropriate weight value. Collision and path-
length estimators are used to evaluate eigenvalues in each
generation.

2.2. Vectorized Monte Carlo Method

In MC simulations for neutron eigenvalue problem, each
neutron will go through two different processes: the flight
analysis and the collision analysis. In the flight analysis, we
sample the neutron transport distance and move the particle
to a new position. Then we check whether the neutron has
reached the medium interface. If not, we perform the
collision analysis and update the weight of the particle.
Otherwise we continue to do another flight analysis until the
sampled distance is less than the minimum distance to
medium interface.

We implemented the vectorized MC algorithm following the
method developed by Brown [6] for Cray vector computers.

A simplified flow chart of the vectorized algorithm is shown
in Figure 2. The basic idea it to keep two particle stacks for
storing the neutrons being simulated in the current batch.
One stack, called F, is used to store neutrons that will
undergo the flight analysis. The other one, called C, is used
to store neutrons that will undergo the collision analysis. In
the beginning, we put all the initial neutrons into the F stack,
and perform the flight analysis for all the neutrons. After
distance sampling, those neutrons that will travel without
crossing medium interfaces will be stored in the C stack for
later collision analysis, and those that travel across medium
interfaces will move to the interface position and stay in F
stack for another flight analysis. This process is repeated
until the F stack is empty, when the collision analysis is
executed for all neutrons in the C stack. At this point, a
shuffling operation is applied to stack C to remove neutrons
that are out of ROI and only keep survived ones for the
collision analysis. Neutrons with weight values below some
critical value after collision will be removed following a
sampling process. The survived neutrons then enter the next
loop of analysis.

If all
batches
finished

If stack
C empty l

N

Free flight

Shuffle F
MELHK

Shuffle F

Figure 2: Simplified flowchart of GPU-based vectorized
MC algorithm implemented in ARCHER.
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By doing these iterative operations, we guarantee that all the
neutrons being processed at the same time are undergoing
the same physical events and involving the same sequence of
instructions. This means that once the method is
implemented on GPUs with each thread simulating one or
more particles, all of the 32 threads within a warp will be
executing the same instructions and the thread divergence
does not occur. Different events are then executed iteratively
in a sequential order until the storage stack becomes empty.
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Note that with the event-based method, there is no one-to-
one correspondence between the particle history and GPU
thread, since different portions of one particle history may be
executed by different threads for the events within that
history.

2.3 GPU Implementation

We first developed a pure CPU code written in C, then
ported the parallelizable modules (initialization of random
numbers and fission sites, tracking of all neutron histories in
a certain batch, etc.) of the code into ARCHERGpy using
CUDA C[9]. Two different MC algorithms, both the history-
based and event-based, were implemented on GPU, thus we
have two versions of ARCHERgpy code.

We used Xorshift [12] pseudo random number generator
(PRNG) for generating fast and high quality random
numbers on the GPU. This PRNG algorithm is included in
the CURAND library [13] provided by the CUDA kit, so it
requires minimal development effort. Thrust library [14] was
used to perform the shuffling operation, which is a key step
in the vectorized MC algorithm.

Local variables including collision and path-length
estimators were put on registers for fast access. Shared
memory was used to store the partial sums of collision/path-
length estimators for all of the threads within a block, which
were then used to calculate the full sum by using the
reduction technique. The neutron cross section data and
geometrical parameters are shared by all of the threads and
their values are not changed throughout the entire
simulation, so these data were put in constant memory. Two
neutron stacks storing the status data of neutrons were stored
in global memory.

One change we made from the previous work is the usage of
page-locked memories on the CPU side. We found that
overuse of the page-lock memory could lead to a bandwidth
bottleneck for a multi-GPU system, so in the vectorized MC
code, we store all the intermediate data in the global memory
on the device. The same change was made to our previously
developed MC code, and test results were re-made by using
the code after modification. This explains why the speedup
factors of history-based MC algorithm shown in this paper
are different from those in our previous paper [5].

The kernel block size was set to be 256, and the number of
neutrons simulated by each thread was 100. The grid size
was then determined by dividing the total number of
neutrons to be handled for the current kernel by 25,600. The
values of these parameters were chosen so that the GPU
code performance was optimum for our particular setup.

II1. Applications and Results
In this study, we considered a heterogeneous 1-D

system that consists of alternately distributed fuel and
moderator slabs. A total of 10 fuel slabs and 11 moderator

slabs are modeled. For simplicity we use the one speed
approximation in our MC implementation. Three physical
processes, elastic scattering, fission and capture, are being
considered for each neutron history in the simulations, where
the last two are regarded as absorption. The cross sections of
each reaction are set such that the resulting eigenvalue is
close to one. Specifically, we use 2F=0.034 cm-1, > A=0.08
cm-1, 2T=0.1 cm-1, v=2.5, Ax=3.8 cm for the fuel, and
2A=0.0001 cm-1, >T=0.1 cm-1, Ax=30.0 cm for the
moderator. The parameters were assigned such that the
eigenvalues would finally be close to 1.

A total of 10° initial neutron histories and 1000
generations (the first 200 are inactive) were simulated by the
CPU and GPU codes, respectively, to achieve convergence
of eigenvalue and fission source distribution. Double
precision floating point arithmetic was used for guaranteeing
the computation precision.

For the performance benchmark, we used a work-station
equipped with an Intel Xeon X5650 2.66GHz CPU and a
NVIDIA Tesla M2090 GPU card with 6GB global memory.
Three versions of the code were tested: ARCHERcpy was
run in serial mode using a single thread on the CPU, while
history-based ARCHERgpy and vectorized ARCHERgpy
were run on the GPU card.

In Table 1, we show the running time of three different
codes and the speed up factors relative to the CPU code.

Computation
Code . Speedup
time [sec]

ARCHERcpy 6077.5 1
ARCHER,

) Gru 208.1 29.2
(history-based)
ARCHER

er 2278.9 2.7

(vectorized)

Table 1. Performance comparison between different
transport codes in ARCHER.

The GPU-based vectorized Monte Carlo code, ARCHERGpy
(vectorized), was found to be slower than its conventional
GPU counterpart, ARCHERgpy (history-based), by a factor
over 10. To find out the cause of the downgraded
performance, the GPU execution statistics per neutron
generation were collected and analyzed by using a profiling
tool NVPROF [15]. In Figure 8 we show the control flow
efficiency of each kernel function for the history-based and
vectorized algorithm. Control flow efficiency, defined as

Control flow efficiency = {Thread Instructions Executed} /
{Instructions Executed} / {Warps Size},

is a measure of how many threads are active for each
instruction. In the ideal case when all the threads within a
warp execute the same instruction, this number will be 100%.
The more the thread divergence occurs, the lower this
number is. From Figure 3, it can be seen that overall the
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control flow efficiency is 2-3 times higher for vectorized
MC kernel functions compared with the history-based MC
kernels. This means that the occurrence of thread divergence
is significantly reduced in vectorized GPU-based MC codes.

CalculateDMinAndSampleDistance [1006]

CheckOutOfROI [219]

GetNewCellInfoAndCheckKilling [794]

InitializeDirection [218]

UpdatePositionBankCollisionWeightWindow
[219]

Transport [1]

) 10 20 30 40 50 60
control flow efficiency [%]

Figure 3: Control flow efficiency of kernel functions.
Magenta and navy bars represent the data for history-
based and vectorized ARCHERgpy codes, respectively.
Numbers in the square brackets denote kernel launch
times.

However, the advantage of higher control flow efficiency is
completely offset by the highly increased global memory
transaction, as is illustrated in Figure 4. Unlike in the
conventional code where neutron attribution data such as
position, direction, energy, weight, etc. are created and
consumed in the fast on-chip registers, in the vectorized code,
they have to be frequently read from and written to the slow
off-chip global memory, which is known to have high access
latency. For the neutron eigenvalue problem considered in
this study, the total global memory throughput per neutron
generation of the vectorized code is on the order of 200 GB,
which is ~60 times larger than that of the conventional code.
The dramatically increased number of global memory
transactions causes large amount of latencies on the GPU
and makes the vectorized MC code much slower than the
conventional one, although the former gives much better
control flow efficiency.

CalculateDMinAndSampleDistance [1006]

CheckOutOfROI [219]

GetNewCellInfoAndCheckKilling [794]

InitializeDirection [218]

UpdatePositionBankCollisionWeightWindow [219]

Transport [1]

6 20 40 60 80 100
global memory transaction [GB]

Figure 4: Global memory throughput of kernel functions.

Magnetic and navy bars represent the data for history-
based and vectorized ARCHERgpy codes, respectively.
Number in the square bracket denotes the kernel launch
times.

Based on the test runs and profiling results, we can draw the
preliminary conclusion that vectorized MC algorithm is
probably not well suited for running on modern GPUs. The
main reason is the high latency of global memory access
associated with the vectorized algorithm deteriorates the
GPU performance. Frequent memory reading/writing is to a
large extent intrinsic to the vectorized algorithm, so latency
is most likely to continue to be a major issue for any effort
of porting vectorized MC code to GPUs.

There are techniques that can be used to possibly alleviate
the global memory latency problem and they will be
investigated in our future studies:

1. In the flight analysis step, we keep executing the flight
kernel until all of the neutrons enter the collision stack. As
this process goes, the number of active neutrons simulated in
the flight kernel is continuing to decrease and it could be
well below one million for the last several flight kernel
executions. In our GPU code, we always use a block size of
256 and let each thread simulate 100 neutrons, so if the total
number of neutrons is only, say, tens of thousands, there are
merely several hundred active threads for the GPU and they
are much less than the maximal active concurrent threads on
the Tesla M2090 card, which is 24576. The stream
processors (SM) in GPU are not fully occupied, resulting in
a very low efficient GPU usage. One possible solution is to
adjust the block size and the number of neutrons per thread
dynamically according to the current total number of
neutrons being simulated to guarantee enough number of
concurrent threads. Another way to improve the GPU
occupancy is to use stack-driven vectorized MC, where one
always chooses the stack with the largest number of particles
to process. This technique can avoid the kernel launch for
events with relatively small size stacks and therefore reduce
the possibilities of inefficient GPU kernel executions.

2. Because the vectorized algorithms are effective in
reducing thread divergence, it may be beneficial to address
the global memory access problem directly. There are many
“tried and true” programming techniques to hide the
latencies for memory access, and some of those techniques
may be useful for GPUs. For example, having several stacks
for both free-flight and collision operations may permit
fetching one stack from memory while the GPUs are
operating on another stack. Techniques such as prefetching,
read-ahead / write-behind, asynchronous access, etc., have
proven effective for conventional CPUs and may be
effective in latency hiding for the GPU global memory
access. These programming techniques, however, further
complicate the Monte Carlo algorithms and may be highly
dependent on relative speeds of specific hardware.

IV. CONCLUSIONS

04206-p.5



Web of Conferences

In this work, we have used the ARCHER testbed to
investigate the performance of vectorized MC methods in
the GPU/CUDA environment. We applied the vectorized
MC method to a neutron eigenvalue problem and compared
its performance with the conventional MC method on GPUs
as well as those on CPUs. We found that the vectorized MC
code indeed reduced the occurrence of thread divergence,
which is known as a challenge in running MC simulations
efficiently on GPU’s SIMT architecture, and greatly
increased the control flow efficiency. However, we also
found that the new algorithm was actually ten times slower
than the conventional MC algorithm on GPUs, mainly due to
the increased number of global memory transactions. Our
preliminary conclusion is that the vectorized MC algorithm,
as implemented in this study, is not well suited for GPUs.
We are currently testing other hardware designs including
the Intel Xeon Phi coprocessor. We then proposed several
directions in which further work can be done to enhance the
performance of vectorized algorithm: (1) more flexible
arrangement of block size and thread working load, (2) the
hybrid algorithm combining both history-based and event-
based MC methods, and (3) programming techniques to hide
memory latency by overlapping computations with memory
access. These future works, once done, should provide more
insight into the role of vectorized MC algorithm in future
peta-scale and exa-scale high performance computers.
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