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For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming 

Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). 
However, traditional MC methods are often history-based, and their performance on GPUs is 
affected significantly by the thread divergence problem. In this paper we describe the 
development of a newly designed event-based vectorized MC algorithm for solving the neutron 
eigenvalue problem. The code was implemented using NVIDIA’s Compute Unified Device 
Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although 
the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing 
the warp execution efficiency, the overall simulation speed is roughly ten times slower than the 
history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to 
the memory access latency caused by the large amount of global memory transactions. Possible 
solutions to improve the code efficiency are discussed. 
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I. Introduction 
Radiation transport problems are frequently encountered 

in many applications including nuclear reactor analysis, 
medical imaging and radiation therapy. It is widely believed 
that Monte Carlo (MC) methods provide the most accurate 
results for radiation transport and are capable of dealing with 
complex geometry and physics models. However, MC 
simulations are often very time-consuming due to the large 
number of simulated histories required to reach satisfactory 
statistical precision. Despite the fast development of modern 
computers, it is still quite challenging to apply MC methods 
in routine nuclear reactor and medical physics calculations 
[1]. 

In recent years, graphics processing unit (GPU) and the 
relevant programming framework, especially NVIDIA’s 
Compute Unified Device Architecture (CUDA) toolkit, have 
emerged as energy-efficient computing solutions and drawn 
wide attention in the supercomputing community. GPUs 
provide both tremendous computing power and the ease of 
use in parallel computing. In particular, GPU is suitable for 
applications with a large portion of work that can be carried 
out in parallel by multiple working threads. MC simulations 
are often embarrassingly parallel, meaning that individual 
histories can be computed simultaneously without 
communications between each other. It is thus natural to 
expect that by running MC simulations on GPUs, one can 
take advantage of the parallel computing power and reduce 
the simulation time accordingly. 

Several groups have made preliminary efforts in 
developing GPU-based MC codes for neutron transport 
simulations.  Heimlich et al. [2] studied the penetration 
probability of an incident neutron beam on a 1-D slab and 
observed a speedup factor of 15. Nelson and Ivanov [3] used 
more complex geometries and physics models to simulate 
the neutron transport, and reported a speedup of 11. Ding et 
al [4, 5] studied neutron eigenvalue problems using spherical 
and binary slab geometries, and observed speedup factors of 
7.0 and 33.3, respectively, on NVIDIA Fermi GPUs 
compared to the same transport simulation running on CPUs.  

In our previous work [4, 5], we developed the GPU-based 
MC code for a simple neutron eigenvalue problem using the 
history-based algorithms, where each thread on the GPU is 
used to deal with the entire history of one or more particles 
until they are absorbed or move out of the region of interest 
(ROI). Our results showed that this strategy is practical and 
the GPU-based code runs an order of magnitude faster than 
the corresponding CPU code. 

However, history-based MC methods suffer from the so-
called thread divergence issue on the GPU which can 
deteriorate the computing performance: On NVIDIA Fermi 
GPUs, every 32 threads are grouped into one warp, and the 
same instructions are executed for all 32 threads within each 
warp simultaneously. The result of this mechanism is that if 
threads within a warp are following different control flow, 
i.e. there are “if…else…” statements involved, then the 
divergent code segment will be executed sequentially, and 

this significantly reduces the parallel efficiency of the code. 
Unfortunately this is exactly the case for MC simulations 
where conditional statements are frequently used for event 
sampling. One solution to this issue is to use the so-called 
vectorized MC algorithms which can completely or partially 
eliminate the thread divergence, therefore facilitating more 
efficient GPU execution.  

Vectorized MC algorithms were first developed in the 
1980s, when Brown and Martin [6, 7, 8] implemented the 
algorithm on vector computers, e.g. Cyber-205 and Cray-1, 
and achieved great success. Today the commodity central 
processing units (CPUs), albeit often equipped with some 
vector components such as Streaming SIMD Extensions 
(SSE), adopt the superscalar architecture and do not work 
directly with the vectorized algorithm. On the contrary, 
NVIDIA GPUs are designed based on the single instruction 
multiple thread (SIMT) architecture [9], which has many 
similarities to the single instruction multiple data (SIMD) 
architecture of vector computers. While the hardware 
implementation is very different, the programming logic is 
nearly identical. It is thus speculated that previously 
developed vectorized algorithms could benefit from this 
hardware architecture and have the potential to run 
efficiently on GPUs. However, SIMT is a hybrid between 
vector processing and hardware threading while SIMD is 
particularly designed for vector processing. There are still 
substantial differences between these two architectures. As 
such, significant amount of work is needed to adapt the 
vectorized code to the GPU platform, making the study of 
vectorized MC methods on GPUs a non-trivial work task. As 
an early attempt, Bergmann et al. [10] investigated the 
vectorized MC algorithm on GPUs by solving a fixed-source 
problem in 2D geometry. They found that although the 
vectorized algorithm improves thread coherency, it does not 
outperform the conventional history-based algorithm on 
GPUs. In this work, we extended previous investigation to 
study vectorized algorithms for a different neutron transport 
problem, namely an eigenvalue problem in slab geometry.  

This paper describes the use of ARCHER to analyze the 
performance of vectorized MC methods under the 
GPU/CUDA environment. We describe the code 
implementation and comparison of the performance of 
vectorized MC algorithms to that of the history-based 
algorithms in the GPU environment. This work is part of the 
project ARCHER (Accelerated Radiation-transport 
Computations in Heterogeneous EnviRonments) [11], which 
is designed as a comprehensive Monte Carlo software 
testbed using novel hardware and advanced programming 
models to speed up Monte Carlo calculations. Currently we 
employ ARCHER as a versatile research tool to evaluate the 
performance of Nvidia’s GPU and Intel’s coprocessor. In the 
long term, we envision ARCHER to be a suite of MC codes 
with the capability to gracefully scale on the exa-scale 
supercomputers. Figures 1 shows the design and long term 
vision of ARCHER. 
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Note that with the event-based method, there is no one-to-
one correspondence between the particle history and GPU 
thread, since different portions of one particle history may be 
executed by different threads for the events within that 
history. 

2.3 GPU Implementation 

We first developed a pure CPU code written in C, then 
ported the parallelizable modules (initialization of random 
numbers and fission sites, tracking of all neutron histories in 
a certain batch, etc.) of the code into ARCHERGPU using 
CUDA C[9]. Two different MC algorithms, both the history-
based and event-based, were implemented on GPU, thus we 
have two versions of ARCHERGPU code.  

We used Xorshift [12] pseudo random number generator 
(PRNG) for generating fast and high quality random 
numbers on the GPU. This PRNG algorithm is included in 
the CURAND library [13] provided by the CUDA kit, so it 
requires minimal development effort. Thrust library [14] was 
used to perform the shuffling operation, which is a key step 
in the vectorized MC algorithm.  

Local variables including collision and path-length 
estimators were put on registers for fast access. Shared 
memory was used to store the partial sums of collision/path-
length estimators for all of the threads within a block, which 
were then used to calculate the full sum by using the 
reduction technique. The neutron cross section data and 
geometrical parameters are shared by all of the threads and 
their values are not changed throughout the entire 
simulation, so these data were put in constant memory. Two 
neutron stacks storing the status data of neutrons were stored 
in global memory. 

One change we made from the previous work is the usage of 
page-locked memories on the CPU side.  We found that 
overuse of the page-lock memory could lead to a bandwidth 
bottleneck for a multi-GPU system, so in the vectorized MC 
code, we store all the intermediate data in the global memory 
on the device. The same change was made to our previously 
developed MC code, and test results were re-made by using 
the code after modification. This explains why the speedup 
factors of history-based MC algorithm shown in this paper 
are different from those in our previous paper [5]. 

The kernel block size was set to be 256, and the number of 
neutrons simulated by each thread was 100. The grid size 
was then determined by dividing the total number of 
neutrons to be handled for the current kernel by 25,600. The 
values of these parameters were chosen so that the GPU 
code performance was optimum for our particular setup. 

III. Applications and Results 

In this study, we considered a heterogeneous 1-D 
system that consists of alternately distributed fuel and 
moderator slabs. A total of 10 fuel slabs and 11 moderator 

slabs are modeled. For simplicity we use the one speed 
approximation in our MC implementation. Three physical 
processes, elastic scattering, fission and capture, are being 
considered for each neutron history in the simulations, where 
the last two are regarded as absorption. The cross sections of 
each reaction are set such that the resulting eigenvalue is 
close to one. Specifically, we use F=0.034 cm-1, A=0.08 
cm-1, T=0.1 cm-1, =2.5, x=3.8 cm for the fuel, and 

A=0.0001 cm-1, T=0.1 cm-1, x=30.0 cm for the 
moderator. The parameters were assigned such that the 
eigenvalues would finally be close to 1. 

A total of 106 initial neutron histories and 1000 
generations (the first 200 are inactive) were simulated by the 
CPU and GPU codes, respectively, to achieve convergence 
of eigenvalue and fission source distribution. Double 
precision floating point arithmetic was used for guaranteeing 
the computation precision.  

For the performance benchmark, we used a work-station 
equipped with an Intel Xeon X5650 2.66GHz CPU and a 
NVIDIA Tesla M2090 GPU card with 6GB global memory. 
Three versions of the code were tested: ARCHERCPU was 
run in serial mode using a single thread on the CPU, while 
history-based ARCHERGPU and vectorized ARCHERGPU
were run on the GPU card.  

In Table 1, we show the running time of three different 
codes and the speed up factors relative to the CPU code.  

Code  
Computation 

time [sec] 
Speedup 

ARCHERCPU 6077.5 1 
ARCHERGPU

(history-based) 
208.1 29.2 

ARCHERGPU

(vectorized) 
2278.9 2.7 

Table 1. Performance comparison between different 
transport codes in ARCHER.

The GPU-based vectorized Monte Carlo code, ARCHERGPU
(vectorized), was found to be slower than its conventional 
GPU counterpart, ARCHERGPU (history-based), by a factor 
over 10. To find out the cause of the downgraded 
performance, the GPU execution statistics per neutron 
generation were collected and analyzed by using a profiling 
tool NVPROF [15]. In Figure 8 we show the control flow 
efficiency of each kernel function for the history-based and 
vectorized algorithm. Control flow efficiency, defined as 

Control flow efficiency = {Thread Instructions Executed} / 
{Instructions Executed} / {Warps Size},  

is a measure of how many threads are active for each 
instruction. In the ideal case when all the threads within a 
warp execute the same instruction, this number will be 100%. 
The more the thread divergence occurs, the lower this 
number is. From Figure 3, it can be seen that overall the 
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control flow efficiency is 2-3 times higher for vectorized 
MC kernel functions compared with the history-based MC 
kernels. This means that the occurrence of thread divergence 
is significantly reduced in vectorized GPU-based MC codes.  

Figure 3: Control flow efficiency of kernel functions. 
Magenta and navy bars represent the data for history-
based and vectorized ARCHERGPU codes, respectively. 
Numbers in the square brackets denote kernel launch 
times. 

However, the advantage of higher control flow efficiency is 
completely offset by the highly increased global memory 
transaction, as is illustrated in Figure 4. Unlike in the 
conventional code where neutron attribution data such as 
position, direction, energy, weight, etc. are created and 
consumed in the fast on-chip registers, in the vectorized code, 
they have to be frequently read from and written to the slow 
off-chip global memory, which is known to have high access 
latency. For the neutron eigenvalue problem considered in 
this study, the total global memory throughput per neutron 
generation of the vectorized code is on the order of 200 GB, 
which is ~60 times larger than that of the conventional code. 
The dramatically increased number of global memory 
transactions causes large amount of latencies on the GPU 
and makes the vectorized MC code much slower than the 
conventional one, although the former gives much better 
control flow efficiency. 

Figure 4: Global memory throughput of kernel functions. 

Magnetic and navy bars represent the data for history-
based and vectorized ARCHERGPU codes, respectively. 
Number in the square bracket denotes the kernel launch 
times.  

Based on the test runs and profiling results, we can draw the 
preliminary conclusion that vectorized MC algorithm is 
probably not well suited for running on modern GPUs. The 
main reason is the high latency of global memory access 
associated with the vectorized algorithm deteriorates the 
GPU performance. Frequent memory reading/writing is to a 
large extent intrinsic to the vectorized algorithm, so latency 
is most likely to continue to be a major issue for any effort 
of porting vectorized MC code to GPUs. 

There are techniques that can be used to possibly alleviate 
the global memory latency problem and they will be 
investigated in our future studies:  

1. In the flight analysis step, we keep executing the flight 
kernel until all of the neutrons enter the collision stack. As 
this process goes, the number of active neutrons simulated in 
the flight kernel is continuing to decrease and it could be 
well below one million for the last several flight kernel 
executions.  In our GPU code, we always use a block size of 
256 and let each thread simulate 100 neutrons, so if the total 
number of neutrons is only, say, tens of thousands, there are 
merely several hundred active threads for the GPU and they 
are much less than the maximal active concurrent threads on 
the Tesla M2090 card, which is 24576. The stream 
processors (SM) in GPU are not fully occupied, resulting in 
a very low efficient GPU usage. One possible solution is to 
adjust the block size and the number of neutrons per thread 
dynamically according to the current total number of 
neutrons being simulated to guarantee enough number of 
concurrent threads. Another way to improve the GPU 
occupancy is to use stack-driven vectorized MC, where one 
always chooses the stack with the largest number of particles 
to process. This technique can avoid the kernel launch for 
events with relatively small size stacks and therefore reduce 
the possibilities of inefficient GPU kernel executions.   

2. Because the vectorized algorithms are effective in 
reducing thread divergence, it may be beneficial to address 
the global memory access problem directly. There are many 
“tried and true” programming techniques to hide the 
latencies for memory access, and some of those techniques 
may be useful for GPUs. For example, having several stacks 
for both free-flight and collision operations may permit 
fetching one stack from memory while the GPUs are 
operating on another stack. Techniques such as prefetching, 
read-ahead / write-behind, asynchronous access, etc., have 
proven effective for conventional CPUs and may be 
effective in latency hiding for the GPU global memory 
access. These programming techniques, however, further 
complicate the Monte Carlo algorithms and may be highly 
dependent on relative speeds of specific hardware.  

IV. CONCLUSIONS 
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In this work, we have used the ARCHER testbed to 
investigate the performance of vectorized MC methods in 
the GPU/CUDA environment. We applied the vectorized 
MC method to a neutron eigenvalue problem and compared 
its performance with the conventional MC method on GPUs 
as well as those on CPUs. We found that the vectorized MC 
code indeed reduced the occurrence of thread divergence, 
which is known as a challenge in running MC simulations 
efficiently on GPU’s SIMT architecture, and greatly 
increased the control flow efficiency.  However, we also 
found that the new algorithm was actually ten times slower 
than the conventional MC algorithm on GPUs, mainly due to 
the increased number of global memory transactions. Our 
preliminary conclusion is that the vectorized MC algorithm, 
as implemented in this study, is not well suited for GPUs. 
We are currently testing other hardware designs including 
the Intel Xeon Phi coprocessor.  We then proposed several 
directions in which further work can be done to enhance the 
performance of vectorized algorithm: (1) more flexible 
arrangement of block size and thread working load, (2) the 
hybrid algorithm combining both history-based and event-
based MC methods, and (3) programming techniques to hide 
memory latency by overlapping computations with memory 
access. These future works, once done, should provide more 
insight into the role of vectorized MC algorithm in future 
peta-scale and exa-scale high performance computers.  
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