2014 4th Workshop on Irregular Applications: Architectures and Algorithms

Heterogeneous Concurrent Execution of Monte Carlo
Photon Transport on CPU, GPU and MIC

Noah Wolfe, Tianyu Liu, Christopher Carothers and Xie George Xu

Rensselaer Polytechnic Institute
Troy, NY 12180
Email: wolfen@rpi.edu

Abstract— In this paper, a new level of heterogeneous
concurrent execution of Monte Carlo photon transport is
presented. ARCHER, an application for computing radiation
dosimetry for CT imaging involving whole-body patient
phantoms has been extended to execute on any combination of
CPUs, GPUs and MICs concurrently. The goal is for ARCHER
to detect and simultaneously utilize all CPU, GPU and MIC
processing devices available. Due to the irregular nature of the
Monte Carlo photon transport algorithm, a new "self service"
approach to organizing the heterogeneous device computing has
been implemented. This approach efficiently and effectively
allows each device to repeatedly grab portions of the domain and
compute concurrently until the entire domain has been
simulated. New timing benchmarks using various combinations
of various Intel and NVIDIA devices are made and presented. A
speedup of 13x has been observed when utilizing Intel's Xeon
X5650 CPU, Intel's Xeon Phi 5110P MIC and NVIDIA's K40
GPU concurrently versus just the Intel Xeon X5650.

Keywords—ARCHER; CPU; GPU; MIC; Heterogeneous;
Concurrent Execution;

I. INTRODUCTION

Currently, the world of high performance computing is in a
state of constant change. As technology advances, computing
architectures continue to evolve as well. The rapid
development of heterogeneous computing systems is providing
easy access to many computing architectures. While a very
interesting topic in itself, this paper does not seek to promote
one single architecture. Instead, this paper focuses on the
irregular development for the simultaneous utilization of all
computing architectures on a combined CPU, GPU and MIC
platform. With heterogeneous computing, one isn't limited to a
single architecture/development platform anymore.

In the medical field, this can mean using a hardware
system’s entire computing capability to generate simulated
patient CT dose values in the doctor’s office in real-time. Some
early research in medical physics implemented a complex and
irregular Monte Carlo transport method on the CPU, GPU and
MIC platforms to simulate the CT scan procedure and calculate
radiation dose [6]. The codes are separately developed and
tested and optimized on each platform. The significance of the
heterogeneous computing method introduced in this paper is to
maximize the system usage and increase patient throughput.

This all goes to show that as computing architectures
advance, the hardware trend is to pair up architectures and

The ARCHER project is funded by the National Institute of Biomedical
Imaging and Bioengineering (NIBIB) (ROIEB015478)

978-1-4799-7056-8/14 $31.00 © 2014 IEEE

DOI 10.1109/1A3.2014.11

49

increase the computational power. The challenge remains to
generate programs that utilize these irregular computing
systems concurrently. This paper contributes to that effort by
presenting a new implementation of concurrent execution on
CPU, GPU and MIC. The first of its kind in Monte Carlo
radiation transport, ARCHER-CT now dynamically detects and
concurrently utilizes all computing devices in heterogeneous
computing systems. Early results show 5x, 10x and 13x
speedups respectively when adding an Intel MIC, NVIDIA
K40 GPU, and both to an Intel Xeon CPU.

II. BACKGROUND

A. Computing Architectures

In this paper, three of today's prominent computing
architectures are discussed. These architectures consist of the
CPU, GPU and MIC. In today's computing world, these three
computing architectures are readily available to developers
seeking high performance computing.

1) CPU: A common computing architecture for quite
some time now, the CPU is typically one physical chip
consisting of several CPU cores. These CPU cores are
completely independent with their own execution pipelines,
registers and control units that allow them to execute
application instructions in parallel. Many of today's CPU
processors also have the ability to perform multiple threads
per core. Although having multiple threads per core does not
necessarily translate to linear speed-ups within each core, it
does allow each core to fully utilize its execution pipeline.

2) GPU: A rapidly advancing architecture, the GPU is a
very powerful computing option. Used as an accelerator, the
GPU is attached to the host system via PCle. Each GPU card
contains a certain number of Streaming Multiprocessors
(SMs). These SMs are composed of a given number of
lightweight Compute Unified Device Architecture (CUDA)
cores that can each perform one instruction on separate data.
Execution on the SMs is done using blocks and each block is
composed of a given number of threads. The number of blocks
and threads per block are set and controlled by the user. Each
block of threads, when ready, gets assigned in warps (groups
of 32 threads) to a group of 16 cores within an SM for
computing. All threads in the same warp follow Single
Instruction Multiple Thread (SIMT) execution [3]. They
perform the same operations at the same time on different
data. As long as conditionals and divergence among threads in

IEEE
computer
® psouety

a block executing on an SM are kept to a minimum, an
application can achieve impressive speedups.

3) MIC: The Intel MIC architecture combines many lower
powered CPU cores onto one chip connected via a
bidirectional ring interconnect. With a frequency of above 1
GHz, each core supports 4 hardware threads. To go along with
the increased number of cores and threads, the MIC
architecture also has wider vector units than the CPU. Wider
512-bit vector units matched with a new AVX-512 SIMD
instruction set, mean it can perform up to 16 single-precision
floating-point operations per clock cycle [1]. Intel's first
iteration Knights Corner Phi coprocessors provide 57 to 61
cores in the form of a PCle accelerator card.

B. ARCHER-CT

ARCHER-CT is a simulation tool created for quantifying
and reporting patient-specific radiation dose for x-ray
Computed Tomography (CT) scan procedures.

1) Irregular Compute Process: Following the Monte
Carlo particle transport method, ARCHER traces photon
particle paths from creation to when they are either absorbed
or leak out of the range of interest. This complex behavior
simulates on the order of 100 million random particles in a
large 3D patient phantom domain composed of over 5 million
voxels. The compute process is highly irregular because in the
random walk process, each random particle can progress
through any arbitrary number of voxels and no two particle
paths through the domain are exactly the same. Fig. 1 shows
some normal history paths of particles in Monte Carlo
simulation. The free path distance D and scatter angle 0 are
randomly generated with appropriate distributions. The
unpredictable and divergent nature of this transport method
makes it very hard to extract SIMD parallelism.

These particles are emitted in scan rotations along the
height of the phantom indicated by a scanRotationIndex value.
Each axial scan is simulated independently with a given
number of particle histories. The parallel strategy takes
advantage of independence of individual histories computed in
the transport process and requires less inter-processor
communication than other methods. This approach is
considered massively parallel as no particle history depends on
any information from any other particle history. The highly
parallel nature of this simulation makes it a great candidate for
heterogeneous concurrent execution.

III. PROGRAM IMPLEMENTATION

A. Device Organization

As shown in Fig. 2, each computing architecture is
connected to one another via the PCle bus. The CPU is the
main computing unit located in the CPU socket and the GPU
and MIC devices are accelerator cards connected through the
PCle slots.

Working with the GPU device requires the CPU to act as a
servant. The CPU is needed to initialize memory, transfer data
and submit kernel jobs to the GPU device. In order to eliminate
wasted CPU and GPU compute time spent servicing and
waiting to be serviced, we dedicate one CPU thread via a

50

Message Passing Interface (MPI) rank RO to control the GPU.
The remaining CPU threads are grouped together in a separate

Fig. I. ARCHER-CT irregular compute process diagram.

MPI rank R1 to compute on their own. Shown in Fig. 2, this
method allows both CPU and GPU to efficiently compute
concurrently.

For the MIC, Intel describes three "compute modes" or
"execution models" for running MPI programs. For concurrent
execution, we use the "native” execution model. In this case,
each MIC device is seen as extra many-core compute node that
runs the simulation on its own micro Linux operating system.

B. Self-Service Compute Structure

Scheduling and balancing work loads among different
devices and different architectures becomes very important to
reduce the idle time. To do so, a new “self-service” technique
is implemented that allows each separate device to grab an
appropriate amount of the domain to compute. In the case of
Monte Carlo particle transport, the computational domain is the
set of scan rotation index values with n-many particles to
simulate per index. These scan rotation index values are shown
as the red rings in Fig. 2. The transport execution is setup so
that each device grabs however many scan rotation index
values they need for saturation, computes the particle paths for
all particles histories within those index values, and then
repeats the process until there are no more index values left.

Index n

Index 8
Index 7
Index 6
Index 5
Index 4
Index 3
Index 2
Index 1

Index 0

CPU (Host)

GPU Device

R1 MIC Device
R4

R3

SSILSS
—————. R0 RS

PCle

Fig. 2. 3D patient phantom domain distribution and device layout.

C. Device Synchronization

In an attempt to make sure all index values are computed
and to prevent repetition of a scan index, MPI is used to pass
around the current rotation index value. Each MPI rank has a
local copy of scanRotationIndex. This variable starts at 0 and
tells which index is to be computed next. Before each rank
selects an index value, they must probe to see if there is an
incoming message (an updated index from another rank). If so,
it receives all the messages and updates the local index
accordingly. Then the rank increases the local index by
however many index values it will compute and then sends the
new local index to all other ranks. This process is repeated until
all index values are computed.

IV. PROGRAM COMPOSITION

In order to have one simulation work on multiple different
devices concurrently, multiple code sets and applications are
compiled separately and executed together. Here the
functionality along with compilation and execution are
described.

A. System Device Query

One major new feature for the ARCHER program is the
ability to detect the underlying compute architectures and
dynamically select and run concurrently on those devices. A
separate program has been created using the Open Computing
Language (OpenCL) and CUDA to detect the underlying
architectures and their corresponding computational specifics.
Based on the query result, the user can either select which of
the available system architectures to use or select all. After the
selection process, the program outputs all relevant computing
information to file. This information includes everything from
processor frequency to number of cores and threads per device.
This data will be later used to generate the optimal data
distribution and execution.

B. ARCHERcpy Gpu

This version of the ARCHER transport computation
application is a subset of code that is tailored and optimized for
efficient and effective concurrent execution on both the CPU as
the host and one or more GPUs as devices. The CPU rank
computes the transport simulation using openMP to utilize all
threads. To overcome the divergent irregular nature of Monte
Carlo transport, the GPU runs multiple streams. Each stream is
another instance of the compute kernel running with a different
scan index. This allows the GPU to be fully saturated. Using
the Self-Service compute structure, both the CPU and GPU
compute concurrently.

C. ARCHERcpy yuc

ARCHERcpy wic is tailored and optimized for efficient and
effective concurrent execution on both the CPU and one or
more MIC devices. This time, the CPU has just one MPI rank
and uses OpenMP to compute the transport simulation using all
threads. As previously mentioned, ARCHERcpy mic has been
setup to run following the "native” execution model. This
allows the MIC to run multiple instances of the exact same
code as the CPU. The only difference is in the compilation step
where we add the flag -mmic to specify that we are compiling
and linking an executable for the MIC architecture. With a

51

CPU compiled executable residing on the host CPU and a MIC
compiled executable of the exact same code residing on each
MIC device, Intel MPI management tool mpirun is used to
launch both executables to compute concurrently.

D. ARCHERcpu cru mic

To achieve concurrent execution across all three
architectures, a composition of both ARCHERcpy gpy and
ARCHERcpy mic code sets are compiled and deployed to each
end device separately in a similar manner to the
ARCHERcpy wmic case. The first compiled executable, based on
ARCHERcpy gpu, is created for the host CPU to run,
controlling GPUs and computing with the remaining CPU
resources. The second executable is based on ARCHERcpy mic
and is created for the MIC to run and compute concurrently
with the CPU and GPU. The mpirun utility is again used to
generate the corresponding number of MPI ranks running the
host executable on the host and the corresponding number of
MPI ranks running the MIC executable on the MIC.

V. COMPUTING SYSTEM

In the interest of a broad and fair comparison, the new
heterogeneous ARCHER implementation has been tested on a
number of devices as shown in Tables 1 and 2. The
computational specifics of each device that most affect the
speed of the simulation are presented along with release date
and introductory price.

A. Intel CPU and MIC Devices

The ARCHER simulation is tested on a newer Intel Core
15-4430 desktop CPU and an older midrange Intel Xeon X5650
server CPU. The MIC architecture is much newer than the
CPU so device selections are much more limited. As a result,
only one device, the Intel Xeon Phi 5110P coprocessor, is
tested.

B. NVIDIA GPU Devices

Many NVIDIA GPUs have been benchmarked. First is a
very popular and common desktop GPU, the NVIDIA GeForce
GTX 670. The second GPU is an older compute dedicated
NVIDIA Tesla M2090. The last two GPU devices are the new
top of the line, compute dedicated NVIDIA K20 and K40.

VI. RESULTS

Each timing result includes the transport computation time
and does not include the file IO and device initialization time.
Also, all timing results are computed on each rank using the
instruction RDTSC. This machine level instruction returns the
number of cycles the processor has completed since last reset.

TABLE L. INTEL CPU AND MIC DEVICE COMPARISON
Product Intel Core| Intel Xeon Intel Xeon
Model i5-4430 X5650 5110P

Microarchitecture | Haswell Westmere | Knights Corner
Cores 4 6 60|
Threads Per Core 1 2 4
Compute Units 4 12 16
Clock Frequency 3.0 GHz 2.66 GHz 1.05 GHz
Peak Performance n/a n/a| 2.02 Tflops[2]
Release Date Q2'13 Q1'10 Q4'12
Intro Price $ 182.00 | $ 999.00 | $ 2,649.00

TABLE II. NVIDIA GPU DEVICE COMPARISON

Product NVIDIA NVIDIA NVIDIA NVIDIA
Model GTX 670 m2090 K20 K40
Microarchitecture Kepler Fermi Kepler Kepler
Multiprocessors (MP) 7 16 13 15
Cuda Cores / MP 192 32 192 192
Total Cuda Cores 1344 512 2496 2880
Max Threads / MP 2048 1536 2048 2048
Total Max Threads 14336 24576 26624 30720
Clock Frequency 915 MHz 1.3 GHz 706 MHz 745 MHz
Peak Performance n/a| 1.33 Tflops[4]| 3.52 Tflops[5]| 4.29 Tflops[5]
Release Date Ql'12 Q2'11 Q4'12 Q4'13
Intro Price $399.00 nfa|$ 3,199.00($ 5,499.00

The time elapsed is expressed in equation (1). In executions
with multiple ranks, the rank with the longest time is taken.

(cyclesEnd-cyclesStart)/processorFrequency (1)

A. Single Device Execution

To get a baseline, each device runs its corresponding
ARCHER architecture simulation on its own. These results are
presented in Table 3. As expected, the device with the smallest
number of compute units, The Intel Core i5 CPU processor,
takes the longest to compute the Monte Carlo transport CT
simulation. This device is therefore taken as the base time
value for which all other device speedups are computed.

As expected, the MIC architecture device with its 60 cores
outperformed the 6 and 4 core CPU devices. Somewhat
surprisingly, all four GPU devices including the desktop
gaming GTX 670 card outperformed the MIC with the K40
GPU reaching a maximum speedup of 14.6x over the baseline
Core-i5. This is largely due to the fact that the computational
capability of the MIC is not being fully utilized in our current
Monte Carlo implementation. As previously mentioned, each
512-bit register in the MIC can pack in and simultaneously
execute sixteen single precision floating-point numbers.
However, the Intel C++ compiler is not able to auto-vectorize
many of the complex loop structures in the Monte Carlo
transport computation. Therefore the 512-bit registers in
actuality are only keeping the result of one of the sixteen
calculations. Taking that into account, the Intel MIC device is
posting a good result. Full utilization and implementation of
the 512-bit vector units by ARCHER is still a work in progress.

B. Multiple Device Concurrent Execution

Interestingly enough, the Core-i5 CPU and the NVIDIA
GTX 670 GPU pair, which is a very common desktop gaming
system setup, has a faster compute time than the concurrent
execution on the Intel server grade Xeon CPU and MIC
coprocessor. This is due largely in part to the 9x speedup

TABLE III. SINGLE DEVICE EXECUTION TIMES AND SPEEDUPS
Device Time | Speedup |KParticles/s
Intel Core i5-4430 | 1309.0 n/a 7.6
Intel Xeon X5650 875.7 15 11.4
Intel Xeon 5110P 211.8 6.2 47.2
NVIDIA GTX 670 153.8 8.5 65.0
NVIDIA m2090 125.7 10.4 79.6
NVIDIA K20 109.2 12.0 91.6
NVIDIA K40 89.5 14.6 111.7

achieved when adding the GTX 670 GPU to the Core-i5 CPU.
Although the Intel server grade CPU tested is an older chip and
the MIC implementation can be improved to obtain better
vectorization of the irregular Monte Carlo algorithm, it goes to
show that high performance computing is readily available in
today’s consumer grade heterogeneous desktop systems.
Focusing on speedups, pairing an Intel MIC or an NVIDIA
K40 GPU with the Intel Xeon CPU returns 5x and 10x
speedups respectively. Three device concurrent execution
shows a 13x speedup when running on the Intel Xeon Phi MIC,
NVIDIA K40 GPU and Intel Xeon CPU. These are seen in
Table 4.

TABLE IV. TwO DEVICE CONCURRENT EXECUTION TIMES

Devices Time |Speedup
Intel Xeon X5650 |Intel Xeon 5110P 172.5 7.6
Intel Core i5-4430[NVIDIA GTX 670 142.2 9.2
Intel Xeon X5650 |NVIDIA m2090 117.3 11.2
Intel Xeon X5650 |NVIDIA K40 85.5 15.3
Intel Xeon X5650 |Intel Xeon 5110P |NVIDIA m2090 88.3 14.8
Intel Xeon X5650 |Intel Xeon 5110P |NVIDIA K40 69.3 18.9

VII. CONCLUSION

In this paper we presented a new application to utilize
heterogeneous computing systems concurrently.
Heterogeneous computing is a new atypical and irregular
platform for computing with immense computational potential
that can now be fully harnessed. Previously optimized
ARCHER CPU, GPU and MIC code sets have now been
combined into one application for simultaneous architecture
computing. The “self-service” method to device organization
and operation, coupled with the ability to detect underlying
device architectures in heterogeneous systems, provides
balance and efficiency to concurrent execution of the irregular
Monte Carlo transport algorithm on various combinations of
devices. This has shown to give strong speedups as more
devices are added to the concurrent execution. A 13x speedup
has been shown for concurrent execution with one CPU, GPU
and MIC.

REFERENCES

[1] Chrysos G., Intel Xeon Phi Coprocessor - the Architecture, Intel (2012).
Found: https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner.

[2] Intel, (2013), Intel Xeon Phi Product Family Performance Rev 1.4.
Retrieved July 28, 2014, http://www.intel.com/content/dam/www/
public/us/en/documents/performance-briefs/xeon-phi-product-family-
performance-brief.pdf

[3] NVIDIA, (2009), NVIDIAs Fermi: The First Complete GPU Computing
Architecture. Retrieved July 28, 2014, http://sbel.wisc.edu/Courses/
ME964/Literature/whitePaperFermiGlaskowsky.pdf.

[4] NVIDIA, (2011), Tesla M-Class CPU Computing Modules: Fastest
Parallel Processors For Accelerating Science.
http://www.nvidia.com/docs/I0/105880/DS_Tesla-M2090_LR.pdf.

[5] NVIDIA, (2013), Tesla Kepler Family Product Overview.
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-
Datasheet.pdf.

[6] Xu X. G. et al., “ARCHER, a New Monte Carlo Software Tool for
Emerging Heterogeneous Computing Environments”, Joint International
Conference on Supercomputing in Nuclear Applications and Monte
Carlo 2013 (SNA + MC 2013), Paris, France, October 27-31, 201.

