
Heterogeneous Concurrent Execution of Monte Carlo 
Photon Transport on CPU, GPU and MIC 

 

Noah Wolfe, Tianyu Liu, Christopher Carothers and Xie George Xu 
Rensselaer Polytechnic Institute 

Troy, NY 12180 
Email: wolfen@rpi.edu

 
 

Abstract— In this paper, a new level of heterogeneous 
concurrent execution of Monte Carlo photon transport is 
presented. ARCHER, an application for computing radiation 
dosimetry for CT imaging involving whole-body patient 
phantoms has been extended to execute on any combination of 
CPUs, GPUs and MICs concurrently. The goal is for ARCHER 
to detect and simultaneously utilize all CPU, GPU and MIC 
processing devices available. Due to the irregular nature of the 
Monte Carlo photon transport algorithm, a new "self service" 
approach to organizing the heterogeneous device computing has 
been implemented. This approach efficiently and effectively 
allows each device to repeatedly grab portions of the domain and 
compute concurrently until the entire domain has been 
simulated. New timing benchmarks using various combinations 
of various Intel and NVIDIA devices are made and presented. A 
speedup of 13x has been observed when utilizing Intel's Xeon 
X5650 CPU, Intel's Xeon Phi 5110P MIC and NVIDIA's K40 
GPU concurrently versus just the Intel Xeon X5650. 

Keywords—ARCHER; CPU; GPU; MIC; Heterogeneous; 
Concurrent Execution; 

I. INTRODUCTION 
Currently, the world of high performance computing is in a 

state of constant change. As technology advances, computing 
architectures continue to evolve as well. The rapid 
development of heterogeneous computing systems is providing 
easy access to many computing architectures. While a very 
interesting topic in itself, this paper does not seek to promote 
one single architecture. Instead, this paper focuses on the 
irregular development for the simultaneous utilization of all 
computing architectures on a combined CPU, GPU and MIC 
platform. With heterogeneous computing, one isn't limited to a 
single architecture/development platform anymore. 

In the medical field, this can mean using a hardware 
system’s entire computing capability to generate simulated 
patient CT dose values in the doctor’s office in real-time. Some 
early research in medical physics implemented a complex and 
irregular Monte Carlo transport method on the CPU, GPU and 
MIC platforms to simulate the CT scan procedure and calculate 
radiation dose [6]. The codes are separately developed and 
tested and optimized on each platform. The significance of the 
heterogeneous computing method introduced in this paper is to 
maximize the system usage and increase patient throughput. 

This all goes to show that as computing architectures 
advance, the hardware trend is to pair up architectures and 

increase the computational power. The challenge remains to 
generate programs that utilize these irregular computing 
systems concurrently. This paper contributes to that effort by 
presenting a new implementation of concurrent execution on 
CPU, GPU and MIC. The first of its kind in Monte Carlo 
radiation transport, ARCHER-CT now dynamically detects and 
concurrently utilizes all computing devices in heterogeneous 
computing systems. Early results show 5x, 10x and 13x 
speedups respectively when adding an Intel MIC, NVIDIA 
K40 GPU, and both to an Intel Xeon CPU. 

II. BACKGROUND 
A. Computing Architectures  

In this paper, three of today's prominent computing 
architectures are discussed. These architectures consist of the 
CPU, GPU and MIC. In today's computing world, these three 
computing architectures are readily available to developers 
seeking high performance computing. 

1) CPU: A common computing architecture for quite 
some time now, the CPU is typically one physical chip 
consisting of several CPU cores. These CPU cores are 
completely independent with their own execution pipelines, 
registers and control units that allow them to execute 
application instructions in parallel. Many of today's CPU 
processors also have the ability to perform multiple threads 
per core. Although having multiple threads per core does not 
necessarily translate to linear speed-ups within each core, it 
does allow each core to fully utilize its execution pipeline. 

2) GPU: A rapidly advancing architecture, the GPU is a 
very powerful computing option. Used as an accelerator, the 
GPU is attached to the host system via PCIe. Each GPU card 
contains a certain number of Streaming Multiprocessors 
(SMs). These SMs are composed of a given number of 
lightweight Compute Unified Device Architecture (CUDA) 
cores that can each perform one instruction on separate data. 
Execution on the SMs is done using blocks and each block is 
composed of a given number of threads. The number of blocks 
and threads per block are set and controlled by the user. Each 
block of threads, when ready, gets assigned in warps (groups 
of 32 threads) to a group of 16 cores within an SM for 
computing. All threads in the same warp follow Single 
Instruction Multiple Thread (SIMT) execution [3]. They 
perform the same operations at the same time on different 
data. As long as conditionals and divergence among threads in 

The ARCHER project is funded by the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB) (R01EB015478) 

2014 4th Workshop on Irregular Applications: Architectures and Algorithms

978-1-4799-7056-8/14 $31.00 © 2014 IEEE

DOI 10.1109/IA3.2014.11

49



a block executing on an SM are kept to a minimum, an 
application can achieve impressive speedups. 

3) MIC: The Intel MIC architecture combines many lower 
powered CPU cores onto one chip connected via a 
bidirectional ring interconnect. With a frequency of above 1 
GHz, each core supports 4 hardware threads. To go along with 
the increased number of cores and threads, the MIC 
architecture also has wider vector units than the CPU. Wider 
512-bit vector units matched with a new AVX-512 SIMD 
instruction set, mean it can perform up to 16 single-precision 
floating-point operations per clock cycle [1]. Intel's first 
iteration Knights Corner Phi coprocessors provide 57 to 61 
cores in the form of a PCIe accelerator card. 

B. ARCHER-CT 
ARCHER-CT is a simulation tool created for quantifying 

and reporting patient-specific radiation dose for x-ray 
Computed Tomography (CT) scan procedures. 

1) Irregular Compute Process: Following the Monte 
Carlo particle transport method, ARCHER traces photon 
particle paths from creation to when they are either absorbed 
or leak out of the range of interest. This complex behavior 
simulates on the order of 100 million random particles in a 
large 3D patient phantom domain composed of over 5 million 
voxels. The compute process is highly irregular because in the 
random walk process, each random particle can progress 
through any arbitrary number of voxels and no two particle 
paths through the domain are exactly the same. Fig. 1 shows 
some normal history paths of particles in Monte Carlo 
simulation. The free path distance D and scatter angle θ are 
randomly generated with appropriate distributions. The 
unpredictable and divergent nature of this transport method 
makes it very hard to extract SIMD parallelism. 

These particles are emitted in scan rotations along the 
height of the phantom indicated by a scanRotationIndex value. 
Each axial scan is simulated independently with a given 
number of particle histories. The parallel strategy takes 
advantage of independence of individual histories computed in 
the transport process and requires less inter-processor 
communication than other methods. This approach is 
considered massively parallel as no particle history depends on 
any information from any other particle history. The highly 
parallel nature of this simulation makes it a great candidate for 
heterogeneous concurrent execution. 

III. PROGRAM IMPLEMENTATION 

A. Device Organization 
As shown in Fig. 2, each computing architecture is 

connected to one another via the PCIe bus. The CPU is the 
main computing unit located in the CPU socket and the GPU 
and MIC devices are accelerator cards connected through the 
PCIe slots. 

Working with the GPU device requires the CPU to act as a 
servant. The CPU is needed to initialize memory, transfer data 
and submit kernel jobs to the GPU device. In order to eliminate 
wasted CPU and GPU compute time spent servicing and 
waiting to be serviced, we dedicate one CPU thread via a 

Message Passing Interface (MPI) rank R0 to control the GPU. 
The remaining CPU threads are grouped together in a separate 

          
Fig. 1. ARCHER-CT irregular compute process diagram. 

MPI rank R1 to compute on their own. Shown in Fig. 2, this 
method allows both CPU and GPU to efficiently compute 
concurrently. 

For the MIC, Intel describes three "compute modes" or 
"execution models" for running MPI programs. For concurrent 
execution, we use the "native” execution model. In this case, 
each MIC device is seen as extra many-core compute node that 
runs the simulation on its own micro Linux operating system. 

B. Self-Service Compute Structure 
Scheduling and balancing work loads among different 

devices and different architectures becomes very important to 
reduce the idle time. To do so, a new “self-service” technique 
is implemented that allows each separate device to grab an 
appropriate amount of the domain to compute. In the case of 
Monte Carlo particle transport, the computational domain is the 
set of scan rotation index values with n-many particles to 
simulate per index. These scan rotation index values are shown 
as the red rings in Fig. 2. The transport execution is setup so 
that each device grabs however many scan rotation index 
values they need for saturation, computes the particle paths for 
all particles histories within those index values, and then 
repeats the process until there are no more index values left. 

         
Fig. 2. 3D patient phantom domain distribution and device layout. 

50



C. Device Synchronization 
In an attempt to make sure all index values are computed 

and to prevent repetition of a scan index, MPI is used to pass 
around the current rotation index value. Each MPI rank has a 
local copy of scanRotationIndex. This variable starts at 0 and 
tells which index is to be computed next. Before each rank 
selects an index value, they must probe to see if there is an 
incoming message (an updated index from another rank). If so, 
it receives all the messages and updates the local index 
accordingly. Then the rank increases the local index by 
however many index values it will compute and then sends the 
new local index to all other ranks. This process is repeated until 
all index values are computed. 

IV. PROGRAM COMPOSITION 
In order to have one simulation work on multiple different 

devices concurrently, multiple code sets and applications are 
compiled separately and executed together. Here the 
functionality along with compilation and execution are 
described. 

A. System Device Query 
One major new feature for the ARCHER program is the 

ability to detect the underlying compute architectures and 
dynamically select and run concurrently on those devices. A 
separate program has been created using the Open Computing 
Language (OpenCL) and CUDA to detect the underlying 
architectures and their corresponding computational specifics. 
Based on the query result, the user can either select which of 
the available system architectures to use or select all. After the 
selection process, the program outputs all relevant computing 
information to file. This information includes everything from 
processor frequency to number of cores and threads per device. 
This data will be later used to generate the optimal data 
distribution and execution. 

B. ARCHERCPU_GPU 
This version of the ARCHER transport computation 

application is a subset of code that is tailored and optimized for 
efficient and effective concurrent execution on both the CPU as 
the host and one or more GPUs as devices. The CPU rank 
computes the transport simulation using openMP to utilize all 
threads. To overcome the divergent irregular nature of Monte 
Carlo transport, the GPU runs multiple streams. Each stream is 
another instance of the compute kernel running with a different 
scan index. This allows the GPU to be fully saturated. Using 
the Self-Service compute structure, both the CPU and GPU 
compute concurrently. 

C. ARCHERCPU_MIC 
ARCHERCPU_MIC is tailored and optimized for efficient and 

effective concurrent execution on both the CPU and one or 
more MIC devices. This time, the CPU has just one MPI rank 
and uses OpenMP to compute the transport simulation using all 
threads. As previously mentioned, ARCHERCPU_MIC has been 
setup to run following the "native” execution model. This 
allows the MIC to run multiple instances of the exact same 
code as the CPU. The only difference is in the compilation step 
where we add the flag -mmic to specify that we are compiling 
and linking an executable for the MIC architecture. With a 

CPU compiled executable residing on the host CPU and a MIC 
compiled executable of the exact same code residing on each 
MIC device, Intel MPI management tool mpirun is used to 
launch both executables to compute concurrently. 

D. ARCHERCPU_GPU_MIC 
To achieve concurrent execution across all three 

architectures, a composition of both ARCHERCPU_GPU and 
ARCHERCPU_MIC code sets are compiled and deployed to each 
end device separately in a similar manner to the 
ARCHERCPU_MIC case. The first compiled executable, based on 
ARCHERCPU_GPU, is created for the host CPU to run, 
controlling GPUs and computing with the remaining CPU 
resources. The second executable is based on ARCHERCPU_MIC 
and is created for the MIC to run and compute concurrently 
with the CPU and GPU. The mpirun utility is again used to 
generate the corresponding number of MPI ranks running the 
host executable on the host and the corresponding number of 
MPI ranks running the MIC executable on the MIC. 

V. COMPUTING SYSTEM 
In the interest of a broad and fair comparison, the new 

heterogeneous ARCHER implementation has been tested on a 
number of devices as shown in Tables 1 and 2. The 
computational specifics of each device that most affect the 
speed of the simulation are presented along with release date 
and introductory price. 

A. Intel CPU and MIC Devices 
The ARCHER simulation is tested on a newer Intel Core 

i5-4430 desktop CPU and an older midrange Intel Xeon X5650 
server CPU. The MIC architecture is much newer than the 
CPU so device selections are much more limited. As a result, 
only one device, the Intel Xeon Phi 5110P coprocessor, is 
tested. 

B. NVIDIA GPU Devices 
Many NVIDIA GPUs have been benchmarked. First is a 

very popular and common desktop GPU, the NVIDIA GeForce 
GTX 670. The second GPU is an older compute dedicated 
NVIDIA Tesla M2090. The last two GPU devices are the new 
top of the line, compute dedicated NVIDIA K20 and K40.  

VI. RESULTS 
Each timing result includes the transport computation time 

and does not include the file IO and device initialization time. 
Also, all timing results are computed on each rank using the 
instruction RDTSC. This machine level instruction returns the 
number of cycles the processor has completed since last reset.  

TABLE I.  INTEL CPU AND MIC DEVICE COMPARISON 

      

51



TABLE II.  NVIDIA GPU DEVICE COMPARISON 

    
The time elapsed is expressed in equation (1). In executions 
with multiple ranks, the rank with the longest time is taken. 

 (cyclesEnd-cyclesStart)/processorFrequency (1) 

A. Single Device Execution 
To get a baseline, each device runs its corresponding 

ARCHER architecture simulation on its own. These results are 
presented in Table 3. As expected, the device with the smallest 
number of compute units, The Intel Core i5 CPU processor, 
takes the longest to compute the Monte Carlo transport CT 
simulation. This device is therefore taken as the base time 
value for which all other device speedups are computed. 

As expected, the MIC architecture device with its 60 cores 
outperformed the 6 and 4 core CPU devices. Somewhat 
surprisingly, all four GPU devices including the desktop 
gaming GTX 670 card outperformed the MIC with the K40 
GPU reaching a maximum speedup of 14.6x over the baseline 
Core-i5. This is largely due to the fact that the computational 
capability of the MIC is not being fully utilized in our current 
Monte Carlo implementation. As previously mentioned, each 
512-bit register in the MIC can pack in and simultaneously 
execute sixteen single precision floating-point numbers. 
However, the Intel C++ compiler is not able to auto-vectorize 
many of the complex loop structures in the Monte Carlo 
transport computation. Therefore the 512-bit registers in 
actuality are only keeping the result of one of the sixteen 
calculations. Taking that into account, the Intel MIC device is 
posting a good result. Full utilization and implementation of 
the 512-bit vector units by ARCHER is still a work in progress. 

B. Multiple Device Concurrent Execution 
Interestingly enough, the Core-i5 CPU and the NVIDIA 

GTX 670 GPU pair, which is a very common desktop gaming 
system setup, has a faster compute time than the concurrent 
execution on the Intel server grade Xeon CPU and MIC 
coprocessor. This is due largely in part to the 9x speedup  

TABLE III.  SINGLE DEVICE EXECUTION TIMES AND SPEEDUPS 

          

achieved when adding the GTX 670 GPU to the Core-i5 CPU. 
Although the Intel server grade CPU tested is an older chip and 
the MIC implementation can be improved to obtain better 
vectorization of the irregular Monte Carlo algorithm, it goes to 
show that high performance computing is readily available in 
today’s consumer grade heterogeneous desktop systems. 
Focusing on speedups, pairing an Intel MIC or an NVIDIA 
K40 GPU with the Intel Xeon CPU returns 5x and 10x 
speedups respectively. Three device concurrent execution 
shows a 13x speedup when running on the Intel Xeon Phi MIC, 
NVIDIA K40 GPU and Intel Xeon CPU. These are seen in 
Table 4. 

TABLE IV.  TWO DEVICE CONCURRENT EXECUTION TIMES 

     

VII. CONCLUSION 
In this paper we presented a new application to utilize 

heterogeneous computing systems concurrently. 
Heterogeneous computing is a new atypical and irregular 
platform for computing with immense computational potential 
that can now be fully harnessed. Previously optimized 
ARCHER CPU, GPU and MIC code sets have now been 
combined into one application for simultaneous architecture 
computing. The “self-service” method to device organization 
and operation, coupled with the ability to detect underlying 
device architectures in heterogeneous systems, provides 
balance and efficiency to concurrent execution of the irregular 
Monte Carlo transport algorithm on various combinations of 
devices. This has shown to give strong speedups as more 
devices are added to the concurrent execution. A 13x speedup 
has been shown for concurrent execution with one CPU, GPU 
and MIC. 

REFERENCES 
[1] Chrysos G., Intel Xeon Phi Coprocessor - the Architecture, Intel (2012). 

Found: https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner. 

[2] Intel, (2013), Intel Xeon Phi Product Family Performance Rev 1.4. 
Retrieved July 28, 2014, http://www.intel.com/content/dam/www/ 
public/us/en/documents/performance-briefs/xeon-phi-product-family-
performance-brief.pdf 

[3] NVIDIA, (2009), NVIDIAs Fermi: The First Complete GPU Computing 
Architecture. Retrieved July 28, 2014, http://sbel.wisc.edu/Courses/ 
ME964/Literature/whitePaperFermiGlaskowsky.pdf. 

[4] NVIDIA, (2011), Tesla M-Class CPU Computing Modules: Fastest 
Parallel Processors For Accelerating Science. 
http://www.nvidia.com/docs/IO/105880/DS_Tesla-M2090_LR.pdf. 

[5] NVIDIA, (2013), Tesla Kepler Family Product Overview. 
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-
Datasheet.pdf. 

[6] Xu X. G. et al., “ARCHER, a New Monte Carlo Software Tool for 
Emerging Heterogeneous Computing Environments”, Joint International 
Conference on Supercomputing in Nuclear Applications and Monte 
Carlo 2013 (SNA + MC 2013), Paris, France, October 27-31, 201. 

52


