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Purpose: One technical barrier to patient-specific computed tomography (CT) dosimetry has been
the lack of computational tools for the automatic patient-specific multi-organ segmentation of CT
images and rapid organ dose quantification. When previous CT images are available for the same
body region of the patient, the ability to obtain patient-specific organ doses for CT — in a similar
manner as radiation therapy treatment planning— will open the door to personalized and prospective
CT scan protocols. This study aims to demonstrate the feasibility of combining deep-learning algo-
rithms for automatic segmentation of multiple radiosensitive organs from CT images with the GPU-
based Monte Carlo rapid organ dose calculation.
Methods: A deep convolutional neural network (CNN) based on the U-Net for organ segmentation
is developed and trained to automatically delineate multiple radiosensitive organs from CT images.
Two databases are used: The lung CT segmentation challenge 2017 (LCTSC) dataset that contains 60
thoracic CT scan patients, each consisting of five segmented organs, and the Pancreas-CT (PCT)
dataset, which contains 43 abdominal CT scan patients each consisting of eight segmented organs. A
fivefold cross-validation method is performed on both sets of data. Dice similarity coefficients
(DSCs) are used to evaluate the segmentation performance against the ground truth. A GPU-based
Monte Carlo dose code, ARCHER, is used to calculate patient-specific CT organ doses. The pro-
posed method is evaluated in terms of relative dose errors (RDEs). To demonstrate the potential
improvement of the new method, organ dose results are compared against those obtained for popula-
tion-average patient phantoms used in an off-line dose reporting software, VirtualDose, at Mas-
sachusetts General Hospital.
Results: The median DSCs are found to be 0.97 (right lung), 0.96 (left lung), 0.92 (heart), 0.86
(spinal cord), 0.76 (esophagus) for the LCTSC dataset, along with 0.96 (spleen), 0.96 (liver), 0.95
(left kidney), 0.90 (stomach), 0.87 (gall bladder), 0.80 (pancreas), 0.75 (esophagus), and 0.61 (duode-
num) for the PCT dataset. Comparing with organ dose results from population-averaged phantoms,
the new patient-specific method achieved smaller absolute RDEs (mean � standard deviation) for all
organs: 1.8% � 1.4% (vs 16.0% � 11.8%) for the lung, 0.8% � 0.7% (vs 34.0% � 31.1%) for the
heart, 1.6% � 1.7% (vs 45.7% � 29.3%) for the esophagus, 0.6% � 1.2% (vs 15.8% � 12.7%) for
the spleen, 1.2% � 1.0% (vs 18.1% � 15.7%) for the pancreas, 0.9% � 0.6% (vs 20.0% � 15.2%)
for the left kidney, 1.7% � 3.1% (vs 19.1% � 9.8%) for the gallbladder, 0.3% � 0.3% (vs
24.2% � 18.7%) for the liver, and 1.6% � 1.7% (vs 19.3% � 13.6%) for the stomach. The trained
automatic segmentation tool takes <5 s per patient for all 103 patients in the dataset. The Monte
Carlo radiation dose calculations performed in parallel to the segmentation process using the
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GPU-accelerated ARCHER code take <4 s per patient to achieve <0.5% statistical uncertainty in all
organ doses for all 103 patients in the database.
Conclusion: This work shows the feasibility to perform combined automatic patient-specific multi-
organ segmentation of CT images and rapid GPU-based Monte Carlo dose quantification with clini-
cally acceptable accuracy and efficiency. © 2020 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.14131]

Key words: convolutional neural network, CT organ dose, Monte Carlo, multi-organ segmentation,
patient-specific

1. INTRODUCTION

In the United States, the number of computed tomography
(CT) examinations increased drastically between the 1980s
and 2010s due to rapid improvements in multidetector CT
(MDCT) technologies.1–3 In 2018, about 88.7 million CT
examinations were performed in the United States alone,
which represented a substantial increase from 21 million
exams in 1995.4 The abdomen and chest regions represent
the most frequently scanned body regions, accounting for
more than a third of all CT examinations. Given the rising use
of CT and concerns over associated radiation risks, the Amer-
ican College of Radiology (ACR) has called for more
research and development in patient-specific dose quantifica-
tion, scanner optimization, and protocol comparison.1

Computed tomography dose index volume (CTDIvol) and
dose length product (DLP) are technical dose descriptors and
do not represent or take into account patient body habitus
(size or shape), attenuation, scanned anatomy, age, gender, or
actually absorbed radiation doses.5 Although CTDIvol and
DLP provide a good way to compare scanners and scan pro-
tocols, they cannot be used to compare, monitor, or assess
patient-specific radiation doses from CT. For this reason,
size-specific dose estimates (SSDE) have been recommended
as an improved approach that take into account patient body
habitus.6 Many methods of generating organ-specific CT
dose databases have been reported.7–15 These methods
require Monte Carlo simulations of CT scanner components
as well as radiation interactions with whole-body computa-
tional phantoms that contain organs/tissues explicitly defined
in tiny voxels in accordance with the “Reference-Man” con-
cept — population-averaged anatomical parameters originally
defined for radiation protection purposes.16 However, the pro-
cess that is required to create such whole-body phantoms is
prohibitively complex for routine analysis of patient-specific
images. As a result, most clinical end users can only perform
CT organ dose assessment using “off-line” software tools,
such as VirtualDose,15 which are based on databases precal-
culated from a library of population-averaged phantoms. In
contrast, in radiation treatment planning, we routinely delin-
eate the target volume and adjacent healthy organs at risk
(OARs) using patient-specific images, before performing
rapid dose calculation and inverse treatment plan optimiza-
tion to minimize normal tissue complication probability
(NTCP).17–19 Patient-specific organ dose computing methods
already exist. Recently, GPU-based Monte Carlo dose

computing codes, including ARCHER,20,21 for example, have
achieved clinically acceptable speeds for both patient CT
imaging dose assessment and for treatment planning.

Rising CT utilization has also heightened the concern that
patients accrue large cumulative doses from recurrent CT
imaging. Sodickson et al. performed a cohort study of 31 462
patients who underwent diagnostic CT in 2007 and had
undergone 190 712 CT examinations over the prior 22 yr.22

The authors discovered that 33% of patients underwent five
or more lifetime CT examinations and that 5% of patients
underwent between 22 and 132 examinations, leading to the
conclusion of the study that, while most patients accrue low
radiation-induced cancer risks, a subgroup is potentially at
higher risk due to recurrent CT imaging. A recent survey per-
formed in 2019 on 90 146 CT patients at Massachusetts Gen-
eral Hospital found that about 63% of chest scan patients
have received at least one previous CT scan between 2014
and 2019.23 The percentage for recurrent abdomen/pelvis
scan patients is 50% and is 40% for head-scan patients.
Approximately 50% of patients in the US undergoing CT
scan have prior CT images. To take advantage of prior CT
scans of the same patient, CT dose optimization will require
the current “retrospective dosimetry” paradigm to be replaced
by the “prospective dosimetry” paradigm, in which organ
dose information is used to guide subsequent CT scans of that
patient.

A prospective patient-specific organ dose method will be
a game changer in CT dosimetry and can help extend the
existing tube current modulation techniques by taking full
advantage of organ localization and distribution of organ
doses. It can also help imaging physicians make informed
and prospective decisions regarding the delivery of doses
based on the clinical question, expected disease distribution,
and organ dose distribution. Such prospective decisions
regarding radiation dose delivery from CT can help usher in
personalized scan protocols with truly organ dose-modulated
techniques. Among the current technical barriers are the lack
of clinically acceptable organ segmentation and rapid organ
dose computing tools for CT.

Organ dose quantification for a set of radiosensitive
organs in every patient undergoing CT scans is important for
radiation protection purposes (instead of cancer treatment
planning purposes). Segmentation of radiosensitive organ
volumes from CT images has long been a challenging task to
the medical physics community.24 Manual organ segmenta-
tion is labor intensive and user dependent, making the
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approach impractical for clinical applications involving
patient-specific images. Until recently, methods of automatic
segmentation of organs relied on low-level image features that
require strong prior knowledge about the anatomical struc-
tures, both of which are insufficient for clinical use.25 The
advent of deep learning methods involving convolutional
neural network (CNN) has brought an unprecedented level of
innovation to the field of image segmentation.26–29 The state-
of-the-art models in organ segmentation are variants of
encoder–decoder architecture such as the fully convolutional
networks (FCNs)30 and U-Net.31 However, these models are
usually trained for specific organs and cannot be easily
extended to multi-organ segmentation needed for CT organ
dosimetry. Recently, Trullo et al.32 used a modified two-di-
mensional FCN to segment four OARs from CT images and
apply conditional random fields to further improve the seg-
mentation performance. Gibson et al.33 applied a three-di-
mensional (3D) Dense V-Network to segment eight organs
from CT images for navigation purposes in endoscopic pan-
creatic and biliary procedures. However, these studies did not
perform organ dose calculations for patients who receive the
CT scans. Recent studies by other groups that did consider
CT organs dose evaluations employed traditional organ seg-
mentation algorithm such as feature-based or atlas-based
methods.34,35 Finally, without the necessary accuracy and
efficiency, patient-specific dosimetry tools would not become
a viable part of the clinical workflow.

This study36 aims to demonstrate the feasibility of a
streamlined fast patient-specific CT organ dose assessment
method that performs segmentation of multiple organs from
patient-specific CT images using deep CNN algorithms and
GPU-accelerated Monte Carlo dose calculations using the
ARCHER code in a parallel computational workflow as illus-
trated in Fig. 1. This is the first study to combine these two
tools to achieve the computational accuracy and efficiency
required for routine clinical applications. In subsequent sec-
tions, we describe steps and methods, summarize results, and
discuss limitations before drawing conclusions.

2. MATERIALS AND METHODS

2.A. Organ segmentation

2.A.1. Datasets and image preprocessing

In this study, two publicly available datasets were used: (a)
The 2017 lung CT segmentation challenge (LCTSC),37–39

which contains 60 thoracic CT scan patients with five seg-
mented organs (left lung, right lung, heart, spinal cord, and
esophagus), and (b) Pancreas-CT (PCT), which contains 43
abdominal contrast enhanced CT scan patients with eight seg-
mented organs (the spleen, left kidney, gallbladder, esopha-
gus, liver, stomach, pancreas, and duodenum).28,33,39,40 For
each patient in these two datasets, the Hounsfield Unit (HU)
values were processed using a minimum threshold of �200
and a maximum threshold of 300 prior to being normalized
to yield values between 0 to 1. In order to focus on organs
and suppress the background information, we cropped and
reserved the regions of interest according to the body contour
in the original CT images and used it as training data. Finally,
to circumvent the computer memory limitation, data resam-
pling was performed using linear interpolation for CT images
and using nearest interpolation for the labels. The interpola-
tion operations are standard routine implementations in com-
mon image processing software. In our implementation, we
used a python package called scipy.41 In the linear interpola-
tion, the value of a pixel after resampling is computed as the
weighted average of its surrounding pixels, where the weights
are calculated based on the distances to the target location. In
the nearest-neighbor interpolation, the value of the nearest
pixel around the target location is assigned to the target pixel
after resampling.42 For the LCTSC dataset, the original slice
resolution is from 1.0 mm 9 1.0 mm to 1.4 mm 9 1.4 mm
and the slice thickness is from 1.0 to 3.0 mm. The resulting
resolution after resampling is 2.0 mm 9 2.0 mm 9

2.5 mm. For the PCT dataset, the original slice resolution is
from 0.7 mm 9 0.7 mm to 1.0 mm 9 1.0 mm, and the
original slice thickness is 1.0 mm. Here, we followed the

FIG. 1. The overall parallel computational process of the method of patient-specific organ dose assessment for computed tomography combining convolutional
neural network-based multi-organ segmentation and a GPU-based Monte Carlo dose engine, ARCHER.
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methods described by Gibson et al.,33 and the size of CT
images was resampled to 144 9 144 9 144 pixels. So after
resampling, the resolution for each patient is different; specif-
ically, the slice resolution is from 1.8 mm 9 1.4 mm to
2.5 mm 9 2.1 mm, and the slice thickness is from 1.1 to
1.6 mm.

2.A.2. Network architecture

The proposed network in this study is based on the 3D U-
Net.43 As shown in Fig. 2, the network consists of an encoder
and a decoder. The role of the decoder network is to map the
low resolution encoder feature maps to full input resolution
feature maps for pixel-wise classification.44 The encoder con-
tains four repeated residual blocks. Each block consists of
four convolutional modules and each convolutional module is
composed by a convolution layer with the kernel of
3 9 3 9 3, an instance normalization, and a leaky rectified
linear unit. For each residual block, the stride of convolution
layer in the convolutional modules is 1 9 1 9 1 except for
the last convolutional module in which the stride is
2 9 2 9 2 to achieve the purpose of downsampling, and
there is a spatial dropout layer between the early two convolu-
tional modules to prevent the network from overfitting. The
decoder contains four repeated segmentation blocks. Each
block consists of two convolutional modules and one decon-
volutional module. Four dashed arrows in the figure indicate
four skipping connections that copy and reuse early feature
maps as the input to later layers that have the same feature
map size by a concatenation operation to preserve high-reso-
lution features. In the final three segmentation blocks, a
1 9 1 9 1 convolution layer is used to map the feature ten-
sor to the probability tensor with the channels of the desired
number of classes, n, before all results are merged by the
upsampling operation to enhance the precision of segmenta-
tion results. Finally, a SoftMax activation is used to output a
probability of each class for every voxel.45

2.A.3. Training and validation

The fivefold cross-validation method was adopted for this
work.46 The entire dataset is randomly split, using the “ran-
dom.shuffle()” function in Python, into five non-overlapping
subsets for training, validation, and testing in the ratio of
3:1:1 (i.e., three subsets for training, one subset for valida-
tion, and one subset for testing). Specifically, for the LCTSC
dataset, a total of 60 patients are divided into five subsets
(each having 12 patients). For the PCT dataset, a total of 43
patients are divided into five subsets (each having eight or
nine patients). The validation process is used to monitor the
training process and to prevent overfitting. To reduce poten-
tial bias, randomly split five subsets are rotated five times to
report the average performance over these five different hold-
out testing subsets, as illustrated in Fig. 3. The fivefold cross
validation strategy is key to ensuring the independence of the
testing data, that is, each sample is used in the testing subsets
only once.

At the training stage, patches are first randomly extracted
from the resampled CT images to achieve data diversity and
to prevent overfitting. The patch size is 96 9 96 9 96 in
LCTSC and 128 9 128 9 128 in PCT. Figure 4 shows an
example of such patches from LCTSC used in the training in
terms of axial, sagittal, and coronal views. The patch-based
training method addresses the problem of different sizes of
CT images as well as the requirement of data augmentation.
An advantage is that it enhances the robustness of the network
model. The limitation is that it may negatively impact the pre-
dicted performance due to the lack of global information
when the patch size is too small. The network can be aware of
the Z location of the patches implicitly because the patch
image in the different Z location is different, and the patches
in any Z location are trained. The orientation of all patches is
the same, so the right lung and left lung have different posi-
tions, and they have different shapes in the patch. Therefore,
the right and left lungs can be differentiated by their position
and shape although they have a similar pixel value.

Then, the network is trained by the patch and its corre-
sponding labels. The loss function is defined as the weighted
dice similarity coefficient as:

Loss ¼ � 1
N � K

XN

i¼1

XK

k¼1

2�PV
v¼1 pi;k;v � yi:k:v

� �þ e
PV

v¼1 pi;k;v þ
PV

v¼1 yi;k;v þ e
;

where pi;k;v is the predicted probability of the voxel v of the
sample i belonging to the class k, yi;k;v is the ground truth
label (0 or 1), N is the number of samples, K is the number of
classes, V is the number of voxels in one sample, and e is a
smooth factor (set to be 1 in this study). The initial learning
rate is 0.0005, and the Adam algorithm47 is used to update
the parameters of the network. The validation loss is calcu-
lated for every epoch, and the learning rate is halved when
the validation loss no longer decreases after 30 consecutive
epochs. To prevent overfitting, the training process is termi-
nated when the validation loss on longer decreases after 50
consecutive epochs.

2.A.4. Testing

In the testing stage, patches are first extracted from each CT
images with a moving window with the size of 96 9 96 9 96
in LCTSC and 128 9 128 9 128 in PCT. The stride is 48 in
LCTSC and eight in PCT. In other words, multiple patches are
extracted from one patient and fed into the network. The output
of the network is a probability tensor for each patch. Then, all
probability tensors are merged from the same patient with a
mean operator in the overlapping area to obtain the final proba-
bility tensor. Next, the class of each voxel is determined by the
largest probability, which is the preliminary results of organ
segmentation, and the value of each voxel is the class number.
Last, using the nearest-neighbor interpolation, the preliminary
segmentation results are resampled to the size of original CT
images to obtain the final organ segmentation results.

All experiments described above were performed on a
Linux computer system. Keras with TensorFlow as the
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backend was used as the platform for designing and training
the neural network.48 The hardware includes: (a) GPU —
Nvidia GeForce Titan X Graphics Card with 12 GB memo-
ries, and (b) CPU — Intel Xeon Processor X5650 with
16 GB memories.

2.B. Organ dose calculations

A GPU-accelerated Monte Carlo code, ARCHER, previ-
ously developed by members of this group was used in this
study to calculate organ doses.20–21,49 ARCHER simulates
the transport of low-energy x-ray photons in heterogeneous
media defined by the patient CT images where photoelectric
effect, Compton scattering, and Rayleigh scattering can take
place. Computed tomography scan protocols are predefined
for ARCHER including a combination of scan mode (helical
or axial), beam collimation (5, 10, or 20 mm), and kVp (80,
100, 120, or 140). Figure 5 illustrates the simulation model
involving a patient and a CT scanner.

This study considers a scanner model representing a GE
Lightspeed Pro 16 MDCT that has been validated in our pre-
vious studies,50,51 although a newer scanner model can be
similarly created when needed in the future. The scanning
protocol includes 120 kVp, 20-mm beam collimation, axial
body scan at a constant 100 mAs. A CT scanner’s continuous
rotational motion is simulated using the step-and-shoot pat-
tern, with each rotation approximated by 16 discrete posi-
tions.50 As shown earlier in Fig. 1, the average absorbed dose
for each organ of interest is derived by combining the newly
segmented organ masks and voxel-wise dose maps calculated
by ARCHER for a specific patient — as is done in radiation
treatment planning. The computational speed is evaluated to
make sure it is acceptable as part of the clinical workflow.

FIG. 2. The network architecture.

FIG. 3. Example of splitting and rotation using the fivefold cross-validation
method for the dataset involving five subsets.
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To show the potential clinical impact of the new method,
patient-specific organ dose results are compared against
organ doses derived from population-average phantoms used
in the VirtualDose software.45,52 Figure 6 shows the RPI-
Adult Male (73 kg in weight and 176 cm in height) and RPI-
Adult Female (60 kg in weight and 163 cm in height) phan-
toms that were designed in accordance with anatomical
parameters for the 50th percentile of the population.52 When
the weight and height of an adult patient are unspecified, the
clinical organ dose assessment procedure at Massachusetts
General Hospital usually picks these standard adult phantoms
from the VirtualDose software to represent that patient.

2.C. Segmentation and organ dose evaluation
criteria

The Dice Similarity Coefficient (DSC) is used to evaluate
the performance of organ segmentation53:

DSC ¼ 2 A \ Bj j
Aj j þ Bj j

where A is the manually segmented organ (i.e., the ground
truth) and B is the automatically segmented organ by the net-
work. The DSC ranges from 0 to 1 with the latter indicating a
perfect performance. The relative dose error (RDE) was used
to evaluate the accuracy of dose calculation for each organ:

RDE ¼ D� Dr

Dr
� 100%

where D is the organ dose calculated by ARCHER using
either automatically segmented organs in the patient-specific
phantom (i.e., our method) or organs in the population-aver-
age phantom, and Dr is the reference organ dose calculated
by ARCHER using manually segmented organs in the
patient-specific phantom.

3. RESULTS

3.A. Organs segmentation

The performance of our network in organ segmentation is
evaluated in terms of the DSC. As shown in Fig. 7, the seg-
mentation results of all organs are summarized in these two
box plots. For 60 patients from LCTSC, we achieved median
DSCs of 0.97 (right lung), 0.96 (left lung), 0.92 (heart), 0.86
(spinal cord), and 0.76 (esophagus), which can be seen in
Fig. 7(a). For 43 patients from PCT, we achieved median
DSCs of 0.96 (spleen), 0.96 (liver), 0.95 (left kidney), 0.90
(stomach), 0.87 (gall bladder), 0.80 (pancreas), 0.75 (esopha-
gus), and 0.61 (duodenum), which can be seen in Fig. 7(b).
Figures 8(a) and 8(b) show visual comparison of manual and
automatic multi-organ segmentation results from both
LCTSC and PCT, respectively, in axial, sagittal, coronal, and
3D views.

3.B. Organ dose calculations

The accuracy of organ dose calculations is evaluated in
terms of RDE for the purposes of CT organ dosimetry, where
10% is generally considered excellent. In the dataset from
LCTSC for a total of 60 patients, organs doses are calculated
for organs including the lung, heart, and esophagus. The left
lung and right lung are treated as one organ, and the RDE of
the spinal cord is not considered because it is not segmented

FIG. 4. An example to illustrate patches from lung computed tomography segmentation challenge the database used in the training in terms of axial, sagittal, and
coronal views.

FIG. 5. Computed tomography (CT) dose simulation model of a patient
undergoing a CT scan.
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in the population-average phantom. In the dataset from PCT
for a total of 43 patients, organs doses are calculated for
organs including the spleen, left kidney, gallbladder, liver,
stomach, and pancreas. The duodenum is not segmented in
the population-average phantom, and the esophagus in the
specific patient is incomplete in the abdominal CT scanning,
so the RDEs are not considered for the duodenum and esoph-
agus. The results are summarized in Table I and further visu-
ally compared in Figs. 9(a) and 9(b) using box plots of RDEs
for each organ in these two datasets. The ground-truth refer-
ence organ doses are calculated for the specific patient using
ground-truth segmentation data from the original database.
The “proposed method” represents the RDE between organ
doses from our automatic segmentation and the reference
organ doses, and the “phantom-based method” represents the

RDE between organ doses from the population-average phan-
tom and reference organ doses. Comparing with the popula-
tion-average phantom-based method, our proposed patient-
specific method achieved much smaller RDE values. In a CT
scan, the height, weight, and organ topology of a patient can
influence organ dose values. There is no doubt that it intro-
duces some errors using population-average phantoms to
replace a specific patient for organ dose calculation. In the
case of dose to the heart, the current method of using popula-
tion-average phantom in the VirtualDose software is found to
have the error range (�15.4%–124.6%) due to the anatomical
differences between the phantom and a real patient. The
patient-specific method has much smaller errors with the
range of �2.9% to 2.6% for the heart due to difference in
organ segmentation between the CNN-based method and the

FIG. 6. RPI-Adult Male (left) and RPI-Adult Female (right) phantoms in the VirtualDose software that were designed in accordance with anatomical parameters
for the 50th percentile of the population, thus bringing errors when compared with patient-specific organ doses.52

FIG. 7. Evaluation of organ segmentation performance in terms of dice similarity coefficients. (a) Data based on 60 patients from the lung computed tomography
segmentation challenge database. (b) Data based on 43 patients from the pancreas-CT database.
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ground truth. These results suggest that the patient-specific
method can bring significant (in the case of dose to the heart,
125/3 times) improvement to the current CT organ dose
assessment method that is based on population-average phan-
toms.

3.C. Computational efficiency

The computing time in our method includes two processes
performed in parallel as illustrated previously in Fig. 1. The
time for automatic multi-organ segmentation for each patient
is <5 s for all 103 patient cases considered in the study. The
time to calculate a total of 1 9 108 photons for each patient
(for a maximum organ dose statistical uncertainty of 0.5%)
using ARCHER code running on an Nvidia Titan RTX GPU
card with 24 GB memory is less than 4 s for all 103 patient

cases. From our experiences, such computational accuracy
and efficiency are expected to be acceptable as part of the
routine clinical workflow.

4. DISCUSSION

In this study, we designed a 3D CNN model to automati-
cally segment thoracic and abdominal organs in patient-speci-
fic CT images using two publicly available databases. For the
duodenum or esophagus, the segmentation performance of
our network was found to be relatively poor because the
organ and its surrounding tissues have similar pixel values in
CT image, making the boundary difficult to detect by the
CNN model. Nevertheless, results from this study have
clearly demonstrated the accuracy and efficiency of the CNN
model in performing the automatic multi-organ segmentation

FIG. 8. Examples for visual comparison of organ segmentation between manual methods from lung computed tomography segmentation challenge (LCTSC) or
pancreas-CT (PCT) database (showed in the upper row in each panel) and our automatic method (showed in the upper row in each panel), in terms of axial, sagit-
tal, coronal, and 3D views (from left to right). (a) LCTSC database showing left lung (yellow), right lung (cyan), heart (blue), spinal cord (green), and esophagus
(red). (b) PCT database showing spleen (green), pancreas (white), left kidney (yellow), gallbladder (blue), esophagus (red), liver (bisque), stomach (magenta),
and duodenum (purple).
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task for the purposes of assessing patient organ doses. Imple-
mentation of the proposed method can lead to significant
improvement in the accuracy of organ dose calculation based
on the population-average phantoms.

As evidenced in the 2017 AAPM Thoracic Auto-Segmen-
tation Challenge, start-of-the-art automatic segmentation
methods, DL-based or atlas-based, can already achieve
impressive performances.38 Therefore, the objective of this
study was not to invent a new and better organs segmentation
method. Instead, the significance of this study is that, for the
first time, we have demonstrated that it is feasible to combine
DL-based automatic multi-organ segmentation tool with the
GPU-based rapid Monte Carlo dose calculation code in a
streamlined process that takes <5 s for each patient. With this
newly demonstrated capability of “patient-specific” organ
dose assessment, future CT scanners can take advantage of
patient- and scan-specific features in a new paradigm — the
“prospective” design of tube voltage and current modulation,
beam collimation and filtering, and gantry angle — leading
to the ultimate goal of achieving low-dose and optimized CT
imaging.

There are several limitations in the current study. The vari-
able and somewhat less accurate performance of our
approach for segmenting narrow and long structures with
poor soft-tissue contrast such as the esophagus and duode-
num may be related to the relatively small size of training
data in the databases causing irregularities in CT attenuation
and position of these structures. Another limitation is that we
did not assess the effect of major abnormalities on the organ
segmentation — an issue already recognized by organizers of
the 2017 lung CT segmentation challenge.38 Likewise, diffuse
abnormalities and paucity of intra-abdominal fat can have a
negative effect on the ability of our segmentation algorithm.
Further studies should consider larger patient data sizes, cov-
ering children and including additional radiosensitive organs
in the head and neck regions. One set of unique data already
available from MGH is the annotated cadaver CT images that
are ideal for testing of DL-based image analysis and dosime-
try algorithms.54–56

Finally, it is worth noting that, with the patient-specific
organ dose information, one can derive the so-called “effec-
tive dose” — a quantity that the American Association of

TABLE I. Comparison of relative dose errors (RDE) of organ doses calculated by the proposed patient-specific method and the population-averaged phantom
method.

Organs

Proposed patient-specific method Population-averaged phantom method

RDE range (%)

Absolute RDE (%)

RDE range (%)

Absolute RDE (%)

Mean Standard deviation Mean Standard deviation

Thorax Lung �7.5–2.2 1.8 1.4 �21.1–46.4 16.0 11.8

Heart �2.9–2.6 0.8 0.7 �15.4–124.6 34.0 31.1

Esophagus �9.4–5.0 1.6 1.7 �10.5–125.6 45.7 29.3

Abdomen Spleen �7.9–1.0 0.6 1.2 �20.1–57.1 15.8 12.7

pancreas �3.4–4.6 1.2 1.0 �20.2–61.1 18.1 15.7

Left kidney �2.0–1.9 0.9 0.6 �39.0–70.8 20.0 15.2

Gallbladder �15.0–3.9 1.7 3.1 �40.1–14.0 19.1 9.8

Liver �0.8–1.3 0.3 0.3 �30.0–72.7 24.2 18.7

Stomach �4.6–8.1 1.6 1.7 �47.7–20.8 19.3 13.6

FIG. 9. The box plots of relative dose errors showing that the proposed patient-specific method has much smaller errors than the population-averaged phantom
method when evaluated against the ground truth data. (a) For 60 patients from lung computed tomography segmentation challenge and (b) for 43 patients from
pancreas-CT.
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Physicists in Medicine (AAPM) believes to bear significant
uncertainty and therefore should be used only for prospective
radiologic protection purposes and to help patients under-
stand medical radiation dose in perspective.57

5. CONCLUSIONS

In this study, an automatic multi-organ segmentation
method has been developed using a CNN model that was
trained with two publicly available CT databases involving a
total of 103 patients. The method takes <5 s to perform auto-
matic multi-organ segmentation for one patient and, for pur-
poses of CT organ dosimetry, has achieved
good segmentation accuracy for the testing cases considered
in this study. The organ dose calculation method takes <4 s
for a total of 1 9 108 photons using the GPU-based rapid
Monte Carlo code, ARCHER, to achieve the organ dose sta-
tistical uncertainty of better than 0.5%. These results demon-
strate, for the first time, the excellent accuracy and efficiency
of a streamlined patient-specific organ dosimetry computa-
tional tool. Implementation of such methods as part of the
clinical workflow can yield considerable improvement over
the current CT organ dose methods that are based on popula-
tion-average phantoms, thus opening the door to prospective
patient-specific optimization features in the future.
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