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ABSTRACT X-ray computed tomography (CT) is a popular diagnostic imaging tool that has caused
public concern over potential radiation risks to the patient. Monte Carlo (MC) simulations are the most
accurate methods to calculate x-ray interactions with the patient’s body and voxel-wise dose distributions,
but the statistical methods suffer from extremely long computing time that is required to achieve necessary
statistical precision. In this paper, we propose and demonstrate the Monte Carlo Denoising Net (MCDNet),
a convolutional encoder-decoder neural network, for the purpose of accelerating the MC radiation transport
simulations for patient CT dosimetry. A unique set of full-body anatomically realistic adult voxel phantoms
of various sizes and a GPU-based parallel MC code were used to produce adequate training and testing
data for supervised learning. Gamma index passing rate (GIPR) was used to evaluate the performance of
predicted dose maps. For CT scan protocols considered in this study, MCDNet is found to have the ability
of predicting dose maps of 9.9 x 107 photons from corresponding dose maps of 1.3 x 106 photons, yielding
76x speed-up in terms of photon numbers used in the MC simulations. MCDNet is the first CNN-based
method to speed-up MC radiation transport simulations involving 3D and heterogeneous patient anatomies
for x-ray CT. Future studies will test the feasibility of applying the deep-learning based denoising strategy
to other MC radiation transport applications.

INDEX TERMS CT dose, Monte Carlo simulation, dose map, machine learning, deep neural network,
Gamma Index Passing Rate.

I. INTRODUCTION

Worldwide, the number of diagnostic x-ray CT examinations
has increased more than 2 dozen folds in the past 3 decades,
owing to rapidly improving multi-detector CT (MDCT) tech-
nologies [1], [2]. Today, the CT procedure is replacing con-
ventional radiography as the initial diagnostic exam in many
emergency rooms and CT scanners are integrated with modal-
ities in nuclear medicine and in image-guided radiotherapy
where a patient can receive multiple CT scans [3]. The Inter-
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national Commission on Radiological Protection (ICRP) has
reported that CT doses can approach or exceed radiation
levels that have been shown to result in an increase in cancer
incidence [1]. The radiation risk is even greater to pregnant
and pediatric patients [2]. The American College of Radiol-
ogy (ACR) urgently calls for more effective methods to evalu-
ate and manage such imaging doses, recognizing that existing
dose computational tools are insufficient for patient-specific
dose quantification, scanner optimization, and protocol com-
parison [4].

CT scanner design has been evolving continuously since
the early 1970s and, currently, helical motion and multi-slice

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

76680 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-3039-3864
https://orcid.org/0000-0002-0604-3197
https://orcid.org/0000-0002-2656-7705

Z. Peng et al.: MCDNet — A Denoising Convolutional Neural Network to Accelerate Monte Carlo Radiation Transport Simulations

IEEE Access

Energy Spectrum,
beam collimation,
filter, tube current

X-ray photon
transmission and
scattering

Motorized table

(a) (b)

FIGURE 1. X-ray CT scans cause patients to be exposed to ionizing
radiation. (a) In helical CT, the table moves as the x-ray source and
detectors rotate. (b) X-rays scattering irradiates health tissues outside the
scan range (red arrows).

capabilities are available. Fig. 1 (a) depicts a patient being
scanned by a CT system and Fig. 1 (b) shows that a por-
tion of the x-ray photons undergoes radiation interactions,
depositing radiation energies in the organs inside and outside
the beam. In the current CT organ dose paradigm, a “whole-
body” phantom is needed for calculating organ doses from
CT. Such calculations would consider typical x-ray source
parameters such as x-ray energy spectrum, beam collimation,
filter, x-ray tube current and irradiation time.

For CT, x-ray photons are less than 160 keV and, in such
energies, they interact with the tissues primarily via the
“photoelectric effects” and “Compton scattering” [5]. The
probability of an interaction occurring within an organ or
tissue depends on energy, tissue electron density and compo-
sition. Although radiation transport problems can be solved
by several methods, only “Monte Carlo (MC) radiation trans-
port calculation”, a simulation method originally developed
and refined for nuclear weapons research in the 1940s at
Los Alamos [6]-[8], is able to account for all aspects of
radiological physics within 3D heterogeneous media such as
the human body. The inherent statistical uncertainty can be
controlled to less than 1% which is often more precise than
an experimental result. Today, MC methods are integral to
nuclear engineering and radiological medical physics owing
to powerful and affordable computers. The MC radiation
transport community has made available a number of well-
tested, large-scale MC code packages [8]-[13]. However,
the MC calculation for CT doses using a production code
can take several hours to achieve acceptable statistical uncer-
tainty, preventing the MC methods from wider clinic applica-
tions [14]. At present, the traditional wisdom of accelerating
MC simulation is to achieve a parallel calculation by the
GPU. However, to achieve acceptable accuracy, the number
of simulative photons cannot be reduced. Here, we proposed
an out of box method that can reduce the simulative photons
while maintaining the comparable accuracy. Therefore, what-
ever MC codes are based on, either CPU or GPU, the pro-
posed method has the advantage of reducing the simulative
photons so as to achieve acceleration, which means that we
can achieve further acceleration on the advanced GPU-based
parallel MC method. The potential limitation is that the pro-
posed network may not produce an acceptable dose map
if the input dose map is very noisy caused by insufficient
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TABLE 1. Parameters of different adult phantoms.

Phantom Sex Weight (kg) | Dimensions (voxels)
1 Male 73 114 x 93 x 509
2 Male 86 114 x 99 x 509
3 Female 63 112 x 90 x 469
4 Female 74 115 x 99 x 469
5 Female 89 116 x 107 x 469

simulative photons. In this study, we demonstrated that our
method can reduce the number of photons by about 76 times
while maintaining acceptable accuracy.

This study was inspired by ideas proposed by Wang regard-
ing the use of phantoms data in deep learning for medical
imaging [15]. Here we propose a method to accelerate the MC
calculations using a convolutional neural network (CNN) that
is trained to predict dose distribution characteristics learned
from MC simulation data. Fig.2 shows the overall flow chart
of the proposed method. First, we generate a database of dose
maps for low- to high-photon fluences using MC simulations
of CT scans. Then we train the CNN to map the low-photon
dose maps to high-photon dose maps. At the core of this
method is a new Monte Carlo “denoising” CNN algorithm —
called Monte Carlo Denoising Net (MCDNet) — that is based
on our previous study [16]. Finally, we evaluate the quality
of predicted dose distributions by comparing voxel-wise dose
levels with the ground truth. A quick literature survey shows
that MCDNet is the first to demonstrate a CNN-based method
for the purposes of accelerating MC radiation transport dose
simulations for 3D and heterogeneous patient anatomies, thus
opening the door for many potential applications.

Il. MATERIAL AND METHOD

MC dose calculations for patients receiving CT imaging were
performed on full-body computational phantoms [17]. Previ-
ously, we have developed a library of 5 male and 5 female
adult phantoms with different body weights ranging from Sth
to 95th percentile [18], as shown in Fig 3. These phantoms
have detailed anatomical information, each having more than
100 well-defined organs and tissues for the purposes of MC
simulations. The geometries were originally modeled using
triangular surfaces, known as boundary representation, and
were then converted into voxels to allow for fast Monte Carlo
simulations [18]. These phantoms provide the basis for the
generation of the ground truth for CNN learning. In this study,
2 RPI adult male and 3 female phantoms were used, each
having a uniform voxel size of 0.35 cm x 0.35 cm x 0.35
cm, as summarized in Table 1. Four phantoms were used for
training, whereas the others for testing.

A model representing a GE Lightspeed Pro 16 multi-
detector CT was modeled and validated in our previous stud-
ies [19], [20]. The simulated scanning protocol is 100 kVp,
20 mm beam collimation, axial body scan, involving a total
of 120 rotations to cover from the thorax to abdomen of
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FIGURE 2. Overall flow chart of the MCDNet training and testing. “Low-photon map” means a dose map from MC simulations involving a low photon
number, and “High-photon map” means a dose map from MC simulations involving a high photon number. The dashed box represents the training

process for MCDNet involving a database of dose maps from various MC sim

ulations derived in human phantoms. The solid box represents the testing

process for the MCDNet-predicted true dose maps by comparing voxel-wise dose accuracy.
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FIGURE 3. Deformable phantoms representing adult males at 5th, 25th,
50th, 75th, 95th weight-percentiles of the population [18].

the patient phantom. CT scanner’s continuous rotational
motion is simulated using the step-and-shoot pattern, with
each rotation approximated by 16 discrete positions [20].
A GPU-accelerated MC code, ARCHER, previously devel-
oped by us was used in this study [21]. ARCHER is an accu-
rate and fast MC simulation tool that supports both Nvidia
and AMD GPU accelerators. In this study, the Nvidia Titan
X card was used.

For each phantom, a ground truth dose distribution map
was first obtained using 1.6 x 10° photons per CT scanner
rotation. A sequence of MC simulations using progressively
fewer photons (from 1.6 x 108 to 1.6 x 10%) were then
performed, taking less MC simulation time but resulting in
an increasingly greater statistical uncertainty. Fig. 4 shows
the dose maps of varying statistical noise for different photon
numbers.

To accelerate the Monto Carlo radiation transport simula-
tions, the proposed MCDNet is essentially a deep learning
method to predict the denoising mapping from low-photon-
fluence dose maps to high-photon-fluence dose maps [16].
Assuming that M, and My, denote the dose distribution maps
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from low photons and high photons, respectively, the goal
of the denoising process is then to seek a function F that
can predict a high-photon dose distribution map for a given
low-photon dose distribution map:

F My, — Mpy,.

Fig. 5 illustrates the structure of the proposed MCDNet, for
learning the mapping function F'. MCDNet is designed as an
encoder-decoder network, with the encoder having 5 convolu-
tional layers and the decoder having 5 deconvolutional layers.
The number of (de)convolutional layers is empirically cho-
sen. Four dashed arrow lines in the figure indicate four con-
veying paths [16], [22] that copy and reuse early feature-maps
as the input to later layers having the same feature-map size
using a concatenation operation to preserve high-resolution
features. The solid line in the figure indicates a residual skip
connection [23] that sums up the input and output of the
MCDNet to reduce the searching space of the network output.
After the summation operation, there is a ReLU activation
layer, then the network outputs the final results. Each layer
has 32 filters, each of size 3 x 3, except for the final layer
that has only 1 filter. One convolutional layer of 32 filters of
kernel size 1 x 1 is used after each concatenation operation to
reduce the total number of feature-maps from 64 to 32. Each
(de)convolutional layer is followed by a ReLU activation
function [24].

The proposed MCDNet is a modified version of the
Conveying-Path Convolutional Encoder-decoder (CPCE)
used in our previous study for CT image denoising [16]. Com-
pared to CPCE, the proposed MCDNet has two more layers
and a residual skip connection from the input to the output for
the network. The skip connection enables the network to infer
the noise from the input image directly. It should be noted
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FIGURE 4. The MC simulated dose maps showing different statistical noise levels. The first row is for dose maps of the female phantom and the second
row is for a male phantom. Different columns are for the MC simulated dose maps for different photon numbers that are listed at the bottom.

that the output space of noise is much smaller than the truth
dose space. Therefore, the skip connection can reduce the
searching space of the network output, making the network
converge faster. In addition to this, the parameters of the
network are usually initialized by a Gaussian distribution
with zero mean, which indicates that the initialized network
without training tends to output an image that all values close
to zero. In this case, the skip connection enables the network
to output the input itself, which is similar to ground-truth in
structures. Therefore, at the starting point, the network with
skip connection can produce better output than that without
skip connection, which also can boost the training speed.
Furthermore, MCDNet is similar to the well-known U-Net
for biomedical imaging segmentation [22] but without the
down-sampling operation in U-Net that can lead to the loss of
details. Such theoretical analysis ensures that the MCDNet is
able to achieve the reasonable performance.

Ill. EXPERIMENT

A. DATA PROCESSING

All dose maps from five phantoms are normalized into the
range of [0, 1]. In order to get sufficient training data,
we trained our network on patches with a data augmentation
technique. More specifically, we extracted the patches of size
64 x 64 from each dose map with a moving stride being
16. Then, we randomly split the patches into the training set
and validation set with a 4:1 ratio. Finally, each patch in the
training set is augmented by rotating 90, 180 and 270 degrees,
respectively, and flipping the patches left and right as well as
up and down. Table 2 shows the data sizes in the training and
validation set.

B. LOSS FUNCTION

The parameters in MCDNet are optimized by minimizing the
Mean Squared Error between the outputs of the network and
the reference high-photon dose map patches according to,

N . 2
2| () = v
i=1
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TABLE 2. The number of patches (64 x 64) of different adult phantoms in
the training and validation set.

Phantom Training set Validation set
1 4608 192
2 6912 288
3 4608 192
4 6912 288
5 6912 288

where N is the total number of training samples. This mini-
mization problem can be solved by various algorithms; in this
work, we adopt the Adam algorithm to update the parame-
ters [25]. The gradients of the parameters are computed using
a back-propagation algorithm [26].

C. TRAINING AND TESTING

At the training stage, the inputs of the network are the
low-photon dose patches of size 64 x 64, the ground truth
data are the high-photon dose patches with the same size.
The initial learning rate is 0.001, and the initial number of
training epoch is 1000. The validation loss is calculated for
every epoch and the training process is terminated when the
validation loss is no longer decreased after 20 consecutive
epochs. In the testing stage, the inputs of the network are
the low-photon dose maps with original size, the outputs
of the network are the predicted high-photon dose maps with
the same size.

For the CT imaging cases considered in this experiment,
the highest number of photons is 1.6 x 10°, the number of
photons required to yield an MC dose map with acceptable
statistic uncertainty. The lower photon numbers include 1.6 x
10*, 1.6 x 10°, 1.6 x 10° and 1.6 x 10”. The dose maps of
1.6 x 10% photons are found to be very close to that of the
1.6 x 10° photons, so they were not used as training data.
We trained a CNN model for each of the low-number dose
maps to produce a total of 4 dose prediction models. For each
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FIGURE 5. The proposed MCDNet structure consisting of 5 convolutional and 5 deconvolutional layers. Four dashed arrow lines indicate four conveying
paths that copy and reuse early feature-maps as the input to later layers with the same feature-map size via concatenation operation to preserve
high-resolution features. The solid line indicates a residual skip connection summing up the input and output of the MCDNet. Each layer has 32 filters
except for the final layer that has only 1 filter. One convolutional layer of 32 1 x 1 filters is used after each concatenation operation to reduce the number
of feature-maps from 64 to 32. Each (de)convolutional layer is followed by a rectified linear unit (ReLU) activation function [24]. The numbers next to
each feature-map represent its spatial size, given the training patch size of 64 x 64.

model, we performed 5-fold cross-validation to obtain testing
results.

All experiments were performed on a Linux operation sys-
tem. Keras was used to design and train our neural network,
the backend is TensorFlow [27]. The hardware includes (1)
GPU: Nvidia GeForce Titan X Graphics Card with 12GB
memories, and (2) CPU: Intel Xeon Processor X5650 with
16GB memories.

D. EVALUATION STANDARD

In this experiment, we performed a Gamma Test which is
a gold standard in comparing dose maps by the radiation
therapy community [28]. The distance-to-agreement is 3 mm,
and the dose-difference is 3%. The Gamma Index Passing
Rate (GIPR) is calculated for a predicted dose map which is
rated by how close the value is to unity.

IV. RESULTS
For all 4 models based on MCDNet, the one trained with dose
maps of 1.6 x 10* photons failed to produce desirable results,
suggesting a lower bound for the proposed deep learning
method. The other 3 successful models have a similar training
process, and we only show one of them here. Fig. 6 presents
the training process of the model for the dose map of 1.6 x 10°
photons. In the model with skip connection, the training loss
and validation loss decrease as the epoch number increase
until the 282nd epoch when the training process is stopped.
The training, validation and testing procedure we used is
typical in the deep learning community, which effectively
avoids either overfitting or underfitting. To better validate our
analysis about skip connection, we trained a model without
the skip connection based on the input dose maps of 1.6 x
10° photons. It can be seen from the Gamma Index Passing
Rate that they can achieve comparable performance with skip
connection (0.9962 + 0.0033) and without skip connection
(0.9962 £ 0.0034), but the model with the skip connection
converges faster and requires fewer epochs. Fig. 6 shows the
difference between the two models in the training process.
Table 3 and Fig. 7 present the statistical data in the
5-fold cross-validation test. In the MC simulations, the mean
computational time, and the mean and the standard deviation
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FIGURE 6. The training loss and validation loss in the model with and

without skip connection trained by the input dose maps of 1.6 x 106
photons.

of GIPR are calculated for dose maps. In the MCDNet,
the mean and the standard deviation of GIPR in the 5-fold
cross-validation are calculated, but the computational time is
not showed because it is less than 3s in each model, which is
negligibly small. The dose maps of 1.6 x 108 photons in MC
simulations that were not used as training data are also listed
in the table to compare the performance of our network. It can
be seen that GIPRs obtained from the proposed MCDNet
are improved to values that extremely close to unity fairly
quickly, even for photon numbers as low as 1.6 x 10°. When
the number of photons is 1.6 x 10%, there are too many blank
voxels in the original dose distribution maps, as shown in the
first column of Fig. 4 previously. At that level of photon num-
ber, MCDNet is not convergent due to insufficient training
information, and finally the output of the network is blank
in the testing, this is related to that the last layer of MCDNet
is a ReLU activation function. What needs to be explained is
that the GIPRs are still far more than zero because there
is the blank background in the all dose distribution maps.
For photon number of 1.6 x 10°, the MCDNet improves the
GIPR from 0.5676 to 0.9678, approaching to the GIPR value
0f 0.9767 from 1.6 x 107 photons in MC simulations. For the
photon number of 1.6 x 10°, the MCDNet improves the GIPR
from 0.7862 to 0.9962. And similarly, for 1.6 x 107 photons,
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TABLE 3. The computational time and GIPR for MC simulations and
MCDNet predictions.

Number MC simulations MCDNet
hotf Time GIPR GIPR
PROTONS 1 (min) M\fean Std Mean Std
1.6x10* | 0.185 | 0.4448 | 0.0676 | 0.4447 | 0.0659
1.6x10° | 0.235 | 0.5676 | 0.0658 | 0.9678 | 0.0285
1.6x10° | 0.275 | 0.7862 | 0.0529 | 0.9962 | 0.0033
1.6x107 | 0.465 | 0.9767 | 0.0173 | 0.9996 | 0.0005
1.6x10% | 2.515 | 0.9999 | 0.0003
1.6x10° | 21.92
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FIGURE 7. The mean GIPR of each model in the 5-fold cross-validation
test which includes 600 dose maps in total. The squares in the dashed
line indicate the mean GIPR of original dose maps from MC simulations.
The circles in the solid line indicate the mean GIPR of predicted dose
maps after using the MCDNet.

the MCDNet improves the GIPR from 0.9767 to 0.9996.
Fig. 8 offers further visual evidence of these results. As can
be seen in the first column of Fig. 8, there is still too much
noise in MC simulations of 1.6 x 10° photon number, but
the corresponding MCDNet results exhibit very little noise.
Second and Third columns of Fig. 8 display nearly perfect
dose maps predicted by MCDNet.

As shown in the row of MC simulations in Table 3,
the GPU-based parallel MC computing time using ARCHER
does not increase linearly as the number of photons increases,
due to the heterogeneous CPU-GPU nature of the algorithm
in ARCHER [21]. From these data, to obtain a low-noise dose
map with a GIPR that is greater than 0.99, it is estimated
that about 9.9 x 107 photons are needed for the original
MC simulations using ARCHER which took 1.640 minutes.
In contrast, the MCDNet can predict a dose map with GIPR
of 0.99 using only 1.3 x 10° photons in the MC simula-
tions using ARCHER which only took 0.266 minutes, yield-
ing 76x speed-up in terms of photon numbers used in the
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MC simulations. Please note that ARCHER was run under
the CPU-GPU architecture and, as such, the speedup in terms
of wall clock time is not linear — in fact the speedup of the wall
clock time for ARCHER code is found to be about 6 showing
the ARCHER code is extremely fast and efficient in utilizing
the parallel GPU device (i.e., if a CPU-based traditional code
such as MCNP or GEANT4 were used, the speedup of wall
clock time would be about 76 x).

Fig. 9 shows the output of the network before the sum-
mation operation (learned noise). As a reference, we also
provide the input image, the ground truth, the prediction
image, and the real noise image (ground truth — input image).
it shows that the network learns the noise from the input
image, and produces the final result after summing. It is noted
that the background of the learned noise image is negative, but
passing through a ReLU activation layer after the summation
operation, the background of the prediction image is the same
with the ground truth as shown.

In order to better understand how the proposed method
works on the feature learning, we randomly select a testing
dose map from 1.6 x 10° photons in MC simulations and
fed it into MCDnet, then we visualized the feature maps
learned by the proposed network on the first, the fifth, and the
ninth convolutional layers as shown in Fig. 10. The display
range is the same for the feature maps in the same layer.
In the red box of each subplot, we provide the input image,
the ground-truth image, the real noise image (ground-truth
— input image), and the learned noise image (the output of
network before summation operation) as the references to
facilitate the understanding of the feature maps shown in the
blue box. Note that the ninth convolutional layer is before the
last deconvolutional layer. All the feature maps refer to as the
output of ReLU activation function. In addition, we briefly
gave the explanation about the feature learning as follows.
In Fig. 10 (a), the feature maps at an early layer tend to be
roughly similar to the input image in terms of the structures,
which indicates that the first convolutional layer tries to
extract the noise but also preserve the structures. In contrast,
the feature maps at a late layer shown in Fig. 10 (¢) tend to
be more similar to the final noise. The value scale of different
feature-maps is discrepant, and each feature map looks fairly
uniform, which indicates that the ninth convolutional layer
learned the different scales of noise. As a trade-off, the feature
maps at the middle layer shown in Fig. 10 (b) are mostly local
with much coarse texture, and the original image features
are not obvious. It means that the fifth convolutional layer
probably infers more noise features from the input image.
In conclusion, the network is trying to infer the noise from
the input image layer by layer.

V. DISCUSSION

In this study, we considered the dose map simulated from
1 x 10° photons to be the ground truth, i.e., noise free.
We produced dose maps of varying degree of noise from
1 x 10* photons to 1 x 10 photons, each involving a full-body
anatomically 3D voxel phantom irradiated by x-rays from
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FIGURE 8. The original MC simulated dose maps and MCDNet predicted dose maps using the RPI female phantom as an example. The two top rows
compare dose maps for the abdominal CT scans obtained from MC and MCDNet, and the bottom two rows compare those for the thorax CT scans.
Each column represents dose maps in different number of photons (denoted by the blacknumbers at the bottom). The pixels are normalized for all
dose maps with yellow pixels 3 x 10~3 MeV / ghoton dark blue referring to 8 x 10~7 MeV / g / photon particularly, the white pixels referring to
zero.The red number at the top of each dose map represents the corresponding GIPR for 1.6 x 102 photons(i.e., the ground truth).

Input Truth Prediction Real noise Learned noise

FIGURE 9. The output of the network before the summation operation (learned noise). As a reference, the input image, the ground truth, the prediction
image, and the real noise image (ground truth -input image) are also provided. It is noted that the background of the learned noise image is negative, but
passing through a RelU activation layer after the summation operation, the backgroundof the prediction image is the same with the ground truth as

shown.

the CT scanner. To generate such as large amounts of neces- ARCHER are in good agreement with those from MCNP,
sary data for training and testing, a home-grown GPU-based but the GPU-accelerated ARCHER code is over 200 times
parallel Monte Carlo code, ARCHER, was used in this faster [29]. In the other words, if a CPU-based MCNP code
study. ARCHER is both high accurate and efficient; for were used in this study instead, we would have to spend
Monte Carlo CT imaging dose calculations, results from about 2,000 days using a CPU cluster equivalent of a Tian
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FIGURE 10. The visualization of feature maps learned by the proposed network on the first, the fifth, and the ninth convolutional layers, respectively.

In the red box of each subplot, we provide the input image, the ground-truth image, the real noise image (ground-truth - input image), and the learned
noise image (the output of network before summation operation) as the references to facilitate the understanding of the feature maps shown in the blue
box. Note that the ninth convolutional layer is before the last deconvolutional layer. All the feature maps refer to as the output of ReLU activation
function after one convolutional layer. (a) The feature maps after the first convolutional layer. (b) The feature maps after the fifth convolutional layer. (c)
The feature maps after the ninth convolutional layer.

X GPU device to produce a similar amount of training data. MCDNet has trained about the noise patterns involving
Therefore, All the results of MC simulation in this paper are 3D, heterogeneous patient anatomies in the context of x-ray
the state-of-the-art. CT imaging. The results show that MCDNet is quite capable
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of predicting dose maps of acceptable statistical precision
without suffering from overfitting — a problem with lacking
training data. The limitations of this study are that all phan-
toms are adults, and we only considered the 100kVp x-ray
energy spectrum. However, these limitations do not change
the conclusion of this study and can be easily remedied in
the future. Based on the MCDNet, we can further improve
the denoising performance by considering the local structure
and the similarity between low-photon dose and high-photon
dose [30], [31]. In addition, to better understand the way of
feature learning, we will further analyze the learned feature
maps [32]. It should be also noted that, to derive dose to
each of the radiosensitive organs, image analysis towards
multi-organ segmentation can also be done [33].

VI. CONCLUSION

Using a unique set of full-body anatomically realistic voxel
phantoms and a GPU-based parallel MC code, we proposed
and tested a convolutional neural network named MCD-
Net to predict dose maps having acceptably small statistical
noise using MC-simulated low-photon-fluence, high-noise
dose map as input. For CT scan protocols considered in this
study, MCDNet is found to have the ability of predicting
dose maps of 9.9 x 107 photons from corresponding dose
maps of 1.3 x 10° photons, yielding 76 x speed-up in terms
of photon numbers used in the MC simulations. Although
there is perhaps still room for network optimization, the per-
formance of the proposed methods is already impressive.
Future work will further improve the denoising performance
and apply to patient-specific clinical applications of CT
dose and other procedures such as radiation treatment plan-
ning, radiation shielding design, and nuclear reactor physics
that are governed by the same statistical and denoising
principles.
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