
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327540610

Performance study of atomic tally methods for GPU-accelerated Monte Carlo

dose calculation

Conference Paper · August 2018

CITATIONS

0
READS

117

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Monte Carlo simulations for Interventional Radiologic organ dose estimates View project

Monte Carlo simulations for organ dose estimation of CT scans View project

Tianyu Liu

Rensselaer Polytechnic Institute

49 PUBLICATIONS   128 CITATIONS   

SEE PROFILE

Noah Z Wolfe

Rensselaer Polytechnic Institute

14 PUBLICATIONS   44 CITATIONS   

SEE PROFILE

Hui Lin

Rensselaer Polytechnic Institute

20 PUBLICATIONS   5 CITATIONS   

SEE PROFILE

George Xu

Rensselaer Polytechnic Institute

125 PUBLICATIONS   2,094 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Tianyu Liu on 09 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327540610_Performance_study_of_atomic_tally_methods_for_GPU-accelerated_Monte_Carlo_dose_calculation?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327540610_Performance_study_of_atomic_tally_methods_for_GPU-accelerated_Monte_Carlo_dose_calculation?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Monte-Carlo-simulations-for-Interventional-Radiologic-organ-dose-estimates?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Monte-Carlo-simulations-for-organ-dose-estimation-of-CT-scans?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tianyu_Liu9?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tianyu_Liu9?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rensselaer_Polytechnic_Institute?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tianyu_Liu9?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noah_Wolfe?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noah_Wolfe?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rensselaer_Polytechnic_Institute?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Noah_Wolfe?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hui_Lin52?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hui_Lin52?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rensselaer_Polytechnic_Institute?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hui_Lin52?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Xu8?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Xu8?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rensselaer_Polytechnic_Institute?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Xu8?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tianyu_Liu9?enrichId=rgreq-dc7c6e062b9687cdfb78fe73b4d71b48-XXX&enrichSource=Y292ZXJQYWdlOzMyNzU0MDYxMDtBUzo2Njg3NjUwOTYyNzU5NjlAMTUzNjQ1NzQzMjAzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


ANS RPSD 2018–20th Topical Meeting of the Radiation Protection & Shielding Division of ANS
Santa Fe, NM, August 26–31, 2018, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2018)

PERFORMANCE STUDY OF ATOMIC TALLY METHODS FOR GPU-ACCELERATED MONTE CARLO DOSE
CALCULATION

Tianyu Liu, Noah Wolfe, Hui Lin, Christopher D. Carothers, and X. George Xu

Rensselaer Polytechnic Institute, 110 8th St, Troy, New York 12180, xug2@rpi.edu

Over the past several years, the graphics processing unit
(GPU) technology has rapidly gained ground in scientific
computing due to its outstanding performance and pro-
grammability. GPU implementation of Monte Carlo radi-
ation transport for dose calculations has been reported by
many investigators. The majority of these studies adopted
single-precision floating point format because of the higher
peak floating point operations per second (FLOPS) the
GPUs can deliver than double-precision. It has been known
that calculation using single-precision is more prone to nu-
merical round-off errors, especially when a single tally data
is accumulated “atomically” and repeatedly by thousands
of GPU threads. To mitigate this problem, the least in-
trusive solution in theory is to replace the single-precision
atomic-add tally function with a double-precision version.
However, the complexity lies in the fact that some GPUs
(Nvidia GPUs prior to the Pascal generation; all current
AMD GPUs) do not readily offer such double-precision
function at hardware level, and that software emulation is
too slow to use if not optimized properly. This paper dis-
cusses several atomic-add tally methods with reduced nu-
merical errors used throughout ARCHER development. The
original software-based compare-and-swap method (CAS)
was shown to be inefficient due to high intra-warp thread
contention, whereas the improved software-based warp-
aggregated method (WAG) and Kahan summation method
(KAS) eliminated the thread contention and performed very
well on Kepler and Maxwell GPUs, being more than 13
times faster than CAS in our tests. The hardware-based
(HB) double-precision atomic-add feature available on Pas-
cal and Volta GPUs exceeded software emulation and of-
fered the best performance universally, so did WIB, a com-
bination of WAG and HB methods. It was also shown that
in a single-precision dose engine, KAS managed to main-
tain high reliability when the single-precision atomic-add
tally underestimated the dose by 25%.

I. INTRODUCTION

I.A. Background

A graphics processing unit (GPU)-accelerated program
needs to run with sufficient concurrent threads in order to
make full use of the hardware. For Monte Carlo radiother-
apy dose calculation, however, the GPU memory is usually
not large enough for each individual thread to hold a lo-
cal tally array. A common solution is to have a single ar-
ray shared by all threads, accumulate the tally data via the

atomic-add operations, and use the batch method for sta-
tistical uncertainty calculation. Here the atomic-add opera-
tions are intended to avoid race condition, a potential prob-
lem specific to multi-threaded programming. Race condi-
tion occurs when two threads try to update the same memory
location, as illustrated in Figure 1. The atomic-add opera-
tion guarantees the correctness of the result, and in the given
example, ensures the final value of a[m] be S + x + y.

time a[m] thread i thread j

S

S

S

S+x
S+y

S

S+x

S+y

S+x

S+y

load

load

store

store

Fig. 1. A simple illustration of race condition. Thread i
and j both update a[m] whose original value is S . Thread
i adds x to S , thread j adds y to S . The final value of a[m]
here should be S + x + y but is instead S + y because thread
j stores its value to the global memory later than thread i.
This problem can be avoided by atomic-add operations.

Previous research in GPU implementation of Monte
Carlo method1–4 usually adopted single-precision floating
point format, with justification that its floating point opera-
tions per second (FLOPS) is 2∼32 times higher than double
precision’s. A potential problem is that the numerical er-
ror resulting from accumulating single precision data may
become remarkable when a few tally data are accumulated
much more frequently than others. It has been observed that,
in voxel-based dose calculation the single-precision result
can deviate from double-precision by over 40%5, and in CT
scan organ dose calculation the lung dose can be underesti-
mated by as much as 20%6. Reducing the numerical error in
single-precision atomic-add operations is therefore worthy
of extended study. In this paper, we compared several solu-
tions we have used throughout ARCHER3 development.

I.B. Related work

Recent work by Bossler7 systematically compared the
performance of five implementations of photon escape tally
on GPUs. (1) global atomics — Having each thread atomic-

mailto:xug2@rpi.edu


add to the global memory. (2) shared atomics — Having
each thread atomic-add to the shared memory, and eventu-
ally having each block atomic-add to the global memory,
(3) warp shuffle — Reducing data to a single thread in each
warp, and having that single thread atomic-add to the global
memory, (4) block reduction — Reducing data to a single
thread in each warp, having that single thread atomic-add
to the shared memory, and eventually having each block
atomic-add to the global memory, (5) no atomics — Each
thread holds and updates a local tally array. Three data types
were tested on a Kepler GPU: 32-bit signed integer, 64-bit
unsigned integer and 32-bit floating point (single-precision).
The 64-bit floating point (double-precision) was also tested
on a Pascal GPU. In addition, Bossler7 compared CAS with
HB for double-precision atomic-add. The findings of these
test cases enabled a better understanding of the benefit of
shared memory and warp shuffle functions for Monte Carlo
tallies.

There are several key differences between Bossler’s7

work and ours. (1) In Bossler’s study double-precision
atomic-add tallies were deemed infeasible on GPUs prior
to Pascal generation due to the very low performance of
CAS, whereas the WAG and KAS tested in our study strive
to solve the exact performance problem underlying CAS.
(2) The WAG and KAS in our study can handle general sit-
uations on GPUs, including (a) thread divergence and (b)
threads in a warp updating more than one memory locations.
In Monte Carlo simulation, threads in a warp are likely to
execute different branches, resulting in the existence of ac-
tive and inactive threads. The inactive threads should not
participate in the computation. More concretely, Ref. 8
pointed out that the warp shuffle functions would yield un-
defined value if data come from inactive threads. The major
intricacy of WAG and KAS lies in the steps taken to skip
those inactive threads when performing warp level reduc-
tion. (3) Bossler’s methods that used the GPU shared mem-
ory, including “shared atomics” and “block reduction” were
not considered because the tally arrays in dose calculation
usually do not fit into the shared memory. (4) We focused
only on the floating point data type (double-precision for
CAS/WAG/HB/WIB, single-precision for KAS).

II. MATERIALS AND METHODS

II.A. Overview

Back in 2010 when the milestone Nvidia Fermi GPUs
were first released, the only way of performing double-
precision atomic-add operations was through a software-
based approach with the compare-and-swap (CAS) algo-
rithm implemented by Nvidia8. This algorithm may not be
feasible in many cases due to heavy thread contention. In
2013 when the Kepler GPUs became available, a new fea-
ture “warp shuffle” was introduced, allowing threads in a
warp to exchange data. It enabled a new algorithm “warp-
aggregated method (WAG)” described in Ref. 9 and 10,

which significantly reduced thread contention at the cost
of additional intra-warp data manipulation. In ARCHER
we implemented a GPU version of Kahan summation algo-
rithm (KAS)11, a classic algorithm originally used to reduce
single-precision numerical errors for sequential code. WAG
and KAS have remained the best atomic-add tally method
with reduced numerical errors for Kepler and Maxwell gen-
eration of GPUs. It was not until recently that the latest Pas-
cal and Volta GPUs provided hardware-based (HB) double-
precision atomic-add operations, a major breakthrough that
generally outperforms software-based solutions. The best
approach for each generation of GPU is summarized in Ta-
ble I.

TABLE I. Best tally method for atomic-add operations on
different generations of GPUs, from the old Fermi to the
latest Volta. “Best” here refers to small numerical error and
decent speed. CAS is very slow, but is the only option for
Fermi GPUs. WS: warp shuffle feature. HB: hardware-
based double-precision atomic-add feature.

Generation WS support HB support Best tally method
Fermi CAS
Kepler X WAG / KAS
Maxwell X WAG / KAS
Pascal X X HB / WIB
Volta X X HB / WIB

II.B. Atomic-add tally methods with reduced numeri-
cal errors on GPUs

II.B.1. Compare-and-swap method (CAS)

Although Nvidia GPUs prior to Pascal generation do
not directly support hardware-based atomic-add operations
for double-precision data (64-bit), they do support atomic
compare-and-swap operations for unsigned long long
int data (64-bit as well). The compare-and-swap function8

old = atomicCAS(address, x, y) reads the data old
located at address and compares it with x. If they are
equal, y is written to address, replacing old. Otherwise
old is written back to address without any change. This
function always returns the data old.

Ref. 8 exploited this function to realize double-precision
atomic-add, shown in Listing 1 line 5. It adds val, the in-
crement, to old, the tally, and checks if old at address is
changed by other threads in the meantime. If not, the new
value (val + old) is stored to address. Otherwise, the
above steps are repeated.

GPUs implement the nominal single-instruction,
multiple-thread (SIMT) model, where threads in a warp
execute the same instruction at nearly the same time. This
means that if some threads of the same warp update the
same memory location, they will almost always result in

2



contention and have to make many repeated attempts before
succeeding, thus reducing the overall performance. In fact,
Ref. 5 considered CAS impractical because it tripled the
computation time in their study.

II.B.2. Warp-aggregated method (WAG)

WAG9,10 takes advantage of the GPU’s warp shuffle in-
trinsic functions, and effectively eliminates the intra-warp
thread contention in CAS. Initially, the warp shuffle func-
tions shfl sync() in CUDA could only operate on 32-
bit data. In order to handle double-precision atomic-add,
we shuffled the 64-bit data address and val in two 32-bit
chunks using the parallel thread execution (PTX) assembly
language12. The recent CUDA API has started supporting
warp shuffle on 64-bit data.

WAG is composed of three major steps. Step (1) (List-
ing 1 line 48), each thread in a warp finds their “peers”, i.e.,
other threads in that warp updating the same memory lo-
cation. Step (2) (Listing 1 line 101), by using intra-warp
manipulations, dose values in peer threads are summed up
and stored in a single leader thread. Step (3) (Listing 1 line
139), only these leader threads in a warp update memory
locations using CAS.

In the worst case where all threads in a warp are ac-
tive and update different memory locations, the first step of
WAG will execute the code block in the do-while loop 32
times, making it slower than CAS. Such case rarely happens
in our dose calculation tests.

Monte Carlo code typically consists of many conditional
statements such as if-else. If threads in the same warp
fall into different branches at runtime, the warp will exe-
cute all branches in sequence. During execution of a certain
branch, threads that do not fall into it will be temporarily
masked and set inactive, while other threads that do will
remain active and execute instructions. It should be empha-
sized that having inactive threads participate in warp shuffle
operations will lead to undefined values8, and that WAG as
well as KAS in the next section are very flexible such that
they skip the masked, inactive threads and operate only on
the active ones.

II.B.3. Kahan summation method (KAS)

KAS is a well-known algorithm initially used to reduce
the numerical errors for sequential single-precision summa-
tion11, shown in algorithm 1.

A GPU-specific KAS was implemented in this study. The
initial version is shown in Listing 2. Two single-precision
values (tally, error) (note: the “error” herein refers to
the round-off error instead of the Monte Carlo statistical un-
certainty) are put together to form a 64-bit data stored at
address. Each time the tally is to be incremented by val,
Kahan summation is performed such that (1) val is com-
pensated using the previously calculated error, (2) tally
is incremented, (3) error is recalculated. The new 64-bit

Algorithm 1: Original Kahan summation
input : P: an array with n elements
output: S : tally

1 S = 0 // tally
2 e = 0 // error
3 for i = 0; i < n; + +i do
4 y← P[i] − e // compensate
5 t ← S + y // lower digits lost
6 e← (t − S ) − y // recover lower digits
7 S ← t // update tally
8 end

(tally, error) pair is then stored back to address us-
ing CAS.

This unoptimized KAS faces the same thread contention
problem with CAS. We therefore used the three-step opti-
mizations as in WAG to update the (tally, error) data.
For completeness, the improved version is shown in List-
ing 3; for brevity, the comments have been stripped.

It is worth mentioning that Kahan summation requires the
error term to be immediately applied to the next increment
val. It is incorrect to accumulate tally and error sep-
arately without using the compare-and-swap function, and
only sum tally and error at the end of the program.

II.B.4. Hardware-based method (HB)

The latest Nvidia Pascal and Volta GPUs provide hard-
ware support for double-precision atomic-add operations.
This effectively eliminates the need to emulate double-
precision atomic operations via many single-precision op-
erations. As an aside, growing trends in Deep Learning
and Artificial Intelligence are placing stronger demands on
lower precision operations and even half-precision hardware
support13. For example, the latest Volta GPUs provide new
“tensor cores” which leverage mixed FP16 (half-precision)
and FP32 (single-precision) hardware support. This trend
shows a potential shift in the GPU market back towards us-
ing lower precision hardware.

II.B.5. WAG in combination of HB (WIB)

If more than one threads in a warp perform atomic-add
operations to the same memory location, the operations will
be serialized8. It would be interesting to know whether this
hardware overhead can be mitigated by WAG for further
performance improvement. This gives birth to WIB, which
follows the first two steps of WAG, as described in subsub-
section II.B.2, to elect the leader threads and reduce data
from peers, but performs a direct HB atomic-add in lieu of
CAS in the third step. WIB is similar to Bossler’s7 “warp
shuffle” method except that the direct warp shuffle operation
is replaced by the intricate WAG method to handle thread
divergence and update of multiple memory locations.

3



II.C. Test cases and hardware

Three test cases were considered in this study. Test 1 uses
a mini application that only performs tally operations. It
is assumed that each particle undergoes 10 collisions. The
energy deposition in each collision fluctuates with a mean
value of 0.1 MeV and is added to one of 8 tally data. Re-
gardless of GPU models, the block per grid is set to 1024
and the thread per block is 64.

Test 2 uses the Monte Carlo photon-electron coupled
transport code in ARCHER. A 20-MeV electron pencil
beam is incident on a water phantom with a dimension of
40 × 40 × 40 cm3 and a voxel count of 100 × 100 × 100.
The block and thread numbers are determined using the per-
sistent thread method14. This test represents the scenario
where atomic-add tallies are performed on many different
voxels.

Test 3 is the same with test 2 except that the phantom
voxel count is reduced to 10 × 10 × 10 while the phantom
dimension remains 40 × 40 × 40 cm3. This test represents
the scenario where atomic-add tallies are focused on fewer
voxels. Test 4 futher reduces the voxel count to 2 × 2 × 2.

A variety of Nvidia GPUs were used, including K40,
M6000 and Titan X. We also ran the test on an experimen-
tal server hosted by Center for Computational Innovations
(CCI) at Rensselaer Polytechnic Institute (RPI). This server
has 4 state-of-the-art Nvidia Tesla V100 GPUs (SXM2
model featuring high-bandwith NVLink technology) and 2
IBM POWER9 processors. Each POWER9 processor has
20 cores with 4 hardware threads. Only 1 V100 GPU and 1
POWER9 were used in this study.

The performance was evaluated by measuring the wall
time of the kernel functions.

III. RESULTS

III.A. Performance comparison of atomic-add meth-
ods

The computation time of the first three tests is shown in
Table II. Double-precision format was chosen for the trans-
port kernel. The CPU atomics by IBM POWER9 CPU sim-
ply refers to the OpenMP atomic operation.

From item (1) (2) and (3), the performance of WAG and
KAS is superior to CAS in test 1. This benefit is not seen
in test 2, where threads in a warp tend to update different
memory locations. However, WAG and KAS are over 16
times faster than CAS in test 3, where the thread contention
in CAS becomes more serious.

From item (5) and (6), HB provided by new-generation
GPUs is superior to the software-based approach in test 1
and 3. As expected, HB exhibits no appreciable advantage
in test 2 which is not bottlenecked by atomic-add operations.

From item (7) and (8), the latest Nvidia Volta GPU has
shown outstanding performance in all tests. The latest IBM
POWER9 CPU is second only to the Volta GPU in test 2.

The cause of POWER9 CPU’s serious underperformance in
test 3 is currently being investigated by comparing the as-
sembly of the OpenMP atomic operation with that on the
x86 platform and GPUs.

To discern the difference between HB and WIB clearly,
the above tests were run with increased number of particles.
Table III shows that WIB is capable of improving the per-
formance by a factor of 4 in the tally-only test (test 1), but
this advantage is not carried to the photon-electron coupled
transport tests (test 2, 3, 4). We verified that for both HB and
WIB, the ARCHER code was run with the same execution
configuration (i.e. the same number of threads and blocks)
and occupancy. These interesting results indicate that the
hardware support for double-precision atomic-add opera-
tions performs so well that the atomic tally no longer consti-
tutes a bottleneck for particle transport simulation and that
the hardware overhead of HB is rendered trivial. The tally-
only test is able to greatly magnify this overhead, which can
be effectively alleviated by WIB.

III.B. Performance and accuracy comparison of
single-precision tally and KAS

To demonstrate the usefulness of KAS, test 3 was re-
run on a K40 GPU using two tally methods, respec-
tively: the native single-precision atomic-add operation
atomicAdd(address, val) (where address is the ad-
dress of the single-precision tally, and val is the single-
precision increment) and KAS. In both cases, single-
precision format was chosen for the transport kernel. Af-
ter the simulation, the sum of all elements in the single-
precision dose tally arrays was calculated. During this step,
the single-precision data were promoted to double-precision
in order to prevent further numerical errors. The sum was
then compared with the double-precision simulation result,
which provides the ground truth.

From Table IV, as the number of histories increases, the
computation time of KAS increases proportionally, being
about 40% ∼ 50% slower than the single-precision atomic-
add counterpart. However, KAS’ effectiveness in numerical
error reduction completely outweighs its drawback. While
the single-precision atomic-add tally becomes increasingly
inaccurate, KAS consistently yields reliable result.

Note that this does not mean the single-precision atomic-
add tally is always unacceptable for Monte Carlo dose cal-
culation. It all depends on the source, geometry, and tally
conditions. KAS substantially reduces the risk with accept-
able performance penalty.

IV. DISCUSSION AND CONCLUSION

There are several interesting directions for future re-
search. (1) Ref. 9 was recently updated with a general
comment that compiler-generated code can be faster than
the manually-written warp-aggregation code. It is worth
investigating on what conditions this happens and how

4



TABLE II. Performance comparison of different atomic-add methods with reduced numerical errors. Double-precision format
was chosen for the transport kernel. T1: time of test 1, which only performs tally accumulation. Test 1 only applies to GPUs,
hence no data for the IBM POWER9 CPU. 107 particles were simulated. T2: time of test 2, which simulates electron-photon
transport in a water phantom with 100× 100× 100 voxel count. 4× 106 particles were simulated. T3: time of test 3, which uses
a coarser water phantom with 10 × 10 × 10 voxel count.

Item Tally method Precision Processor (generation) T1 [s] T2 [s] T3 [s]
1 CAS double K40 GPU (Kepler) 83 12 130
2 WAG double K40 GPU (Kepler) 6.3 12 8
3 KAS single K40 GPU (Kepler) 6.3 12 7.9
4 WAG double M6000 GPU (Maxwell) 13 6.7 7
5 WAG double Titan X GPU (Pascal) 6.9 4.5 4.2
6 HB double Titan X GPU (Pascal) 0.07 4.5 3.1
7 HB double V100 GPU (Volta) 0.035 1.9 1.3
8 CPU atomics double IBM POWER9 CPU (80 threads) – 3.5 7.8

TABLE III. The test cases are the same with Table II but were run with increased numbers of particles. Test 1 was run with
3 × 109 particles, while test 2, 3, 4 with 4 × 107 particles. Test 4 used an even coarser water phantom (2 × 2 × 2 voxel count).

Tally method Precision Processor (generation) T1 [s] T2 [s] T3 [s] T4 [s]
HB double V100 GPU (Volta) 10 19 13 10
WIB double V100 GPU (Volta) 2.7 20 14 11

much faster the code becomes. (2) As the GPU hardware
evolves over years, so does CUDA programmability. The
recently introduced “cooperative groups” API may simplify
the source code listed in this paper and enhance the read-
ability. (3) For calculation requiring quadruple-precision
format, Nvidia provided algorithms to perform basic arith-
metic operations (multiply, divide, square root, etc)15, but
atomic-add algorithm for quadruple-precision has not been
implemented yet. (4) Current AMD GPUs do not support
HB double-precision atomic-add operations. It is neces-
sary to evaluate the feasibility of porting WAG and KAS
to OpenCL for AMD GPUs.

In conclusion, for simulation of photon-electron coupled
transport, numerical errors may result from a few single-
precision tally data being frequently updated by many
threads via atomic-add operations. WAG and KAS are
found efficient in reducing these numerical errors for Ke-
pler and Maxwell GPUs. HB double-precision atomic-add
on Pascal and Volta GPUs shows the highest performance.
While WIB is equally fast in the transport simulation test,
it is able to further alleviate the hardware overhead of HB
in the tally-only test. ARCHER3 is designed to adopt the
fastest method on different GPUs and allows users to choose
between single and double-precision dose engines.

ACKNOWLEDGMENTS

This research is funded by National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB) Grant R42-

EB019265. We thank Nvidia for the generous GPU do-
nation. We also thank Dr. Forrest Brown, LANL, for the
helpful discussion in 2015 on the compensated summation
algorithms.

REFERENCES

1. S. HISSOINY, B. OZELL, H. BOUCHARD, and
P. DESPRÉS, “GPUMCD: A new GPU-oriented Monte
Carlo dose calculation platform,” Medical physics, 38,
2, 754–764 (2011).

2. X. JIA, X. GU, J. SEMPAU, D. CHOI, A. MAJUM-
DAR, and S. B. JIANG, “Development of a GPU-
based Monte Carlo dose calculation code for coupled
electron–photon transport,” Physics in Medicine & Bi-
ology, 55, 11, 3077 (2010).

3. X. G. XU, T. LIU, L. SU, X. DU, M. RIBLETT, W. JI,
D. GU, C. D. CAROTHERS, M. S. SHEPHARD, F. B.
BROWN, ET AL., “ARCHER, a new Monte Carlo soft-
ware tool for emerging heterogeneous computing envi-
ronments,” Annals of Nuclear Energy, 82, 2–9 (2015).

4. R. M. BERGMANN and J. L. VUJIĆ, “Algorithmic
choices in WARP–A framework for continuous energy
Monte Carlo neutron transport in general 3D geome-
tries on GPUs,” Annals of Nuclear Energy, 77, 176–193
(2015).

5. V. MAGNOUX, B. OZELL, É. BONENFANT, and

5



TABLE IV. Performance and accuracy comparison of the single-precision atomic-add tally and KAS on a K40 GPU using test
3. Single-precision format was chosen for the transport kernel. The discrepancy refers to (tested method - double precision) /

double precision.

Particles Single-precision atomic-add tally KAS
Discrepancy Time [s] Discrepancy Time [s]

4 × 106 -0.19 % 6 −3.58 × 10−5 % 8
8 × 106 -0.88 % 11 1.67 × 10−5 % 16

1.6 × 107 -3.86 % 22 −1.98 × 10−5 % 31
3.2 × 107 -11.17 % 44 −1.40 × 10−5 % 63
6.4 × 107 -25.47 % 88 −9.73 × 10−6 % 121

P. DESPRÉS, “A study of potential numerical pitfalls
in GPU-based Monte Carlo dose calculation,” Physics
in Medicine & Biology, 60, 13, 5007 (2015).

6. T. LIU, X. G. XU, and C. D. CAROTHERS, “Com-
parison of two accelerators for Monte Carlo radiation
transport calculations, Nvidia Tesla M2090 GPU and
Intel Xeon Phi 5110p coprocessor: A case study for X-
ray CT imaging dose calculation,” Annals of Nuclear
Energy, 82, 230–239 (2015).

7. K. L. BOSSLER, “Methods for computing Monte Carlo
tallies on the GPU,” in “PHYSOR 2018: Reactor
Physics paving the way towards more efficient sys-
tems,” American Nuclear Society (ANS) (2018).

8. NVIDIA, CUDA C programming guide: design guide,
v9.1, Nvidia (2018).

9. A. ADINETS, “CUDA pro tip: optimized filtering with
warp-aggregated atomics,” (2014).

10. E. WESTPHAL, “Voting and shuffling to optimize
atomic operations,” (2015).

11. W. KAHAN, “Pracniques: further remarks on reducing
truncation errors,” Communications of the ACM, 8, 1,
40 (1965).

12. NVIDIA, Parallel Thread Execution ISA Version 6.2,
Nvidia (2018).

13. A. KRIZHEVSKY, I. SUTSKEVER, and G. E. HIN-
TON, “Imagenet classification with deep convolutional
neural networks,” in “Advances in neural information
processing systems,” (2012), pp. 1097–1105.

14. K. GUPTA, J. A. STUART, and J. D. OWENS, “A
study of persistent threads style GPU programming for
GPGPU workloads,” in “Innovative Parallel Computing
(InPar), 2012,” IEEE (2012), pp. 1–14.

15. NVIDIA, “NVIDIA developer program – Compute-
Works exclusive downloads: CUDA double-double
precision arithmetic,” (2013).

6



APPENDIX

Listing 1. GPU implementation of fast double-precision
atomic add based primarily on Ref. 8–10. The last func-
tion UtilityGPU::atomicAddFast() (line 161) is the in-
terface to be used directly.

1 // CUDA-C++ code. Require nvcc 9.0 or newer.
2 namespace UtilityGPU
3 {
4 #if defined(__CUDACC__)
5 __device__ __forceinline__ double atomicAddFP64CAS(

double* address, double val)
6 {
7 // nvidia’s code
8 // one way of type punning
9 unsigned long long int* address_as_ull = (unsigned

long long int*)address;
10 unsigned long long int old = *address_as_ull ,

assumed;
11 do
12 {
13 assumed = old;
14
15 // atomicCAS(address, compare, val):
16 // reads the 64-bit word old located at the

address in global
17 // memory, evaluates (old == compare ? val : old

), and stores the
18 // result back to memory at the same address.

These three operations are
19 // performed in one atomic transaction. The

function returns old.
20 old = atomicCAS(address_as_ull , assumed,

__double_as_longlong(val +
__longlong_as_double(assumed)));

21 }
22 // keep trying until the value at the address

happens to be not changed by other threads
23 // use integer comparison to avoid hang in case of

NaN (since NaN != NaN)
24 while (assumed != old);
25 return __longlong_as_double(old);
26 }
27
28 __device__ __forceinline__ double atomicAddFP64WAG(

double* address, double val)
29 {
30 // for the dated Fermi GPUs
31 #if __CUDA_ARCH__ < 300
32 return atomicAddFP64CAS(address, val);
33
34 #else
35 // another way of type punning
36 union HelperUnionFP64
37 {
38 double* address;
39 double helper;
40 };
41
42 union HelperUnion2FP64
43 {
44 double data;
45 unsigned long long int helper;
46 };
47
48 // step 1: find peers, i.e. threads in the same warp

that are going to update
49 // the same address, which will cause CAS to be

excruciatingly slow
50 unsigned int lane;
51 // %laneid is a predefined , read-only special

register that returns
52 // the thread’s lane within the warp. The lane

identifier ranges from zero to WARP_SZ -1
53 asm volatile("mov.u32 %0, %laneid;" : "=r"(lane));
54
55 unsigned int peers = 0;
56 bool is_peer;

57
58 // --> __activemask(): Returns a 32-bit integer mask

of all currently active threads in the calling
warp.

59 // The Nth bit is set if the Nth lane in the
warp is active when __activemask()

60 // is called. Inactive threads are represented
by 0 bits in the returned mask.

61 // Threads which have exited the program are
always marked as inactive.

62 // --> __ballot(1) has been replaced by __activemask
() since cuda 9.

63 unsigned unclaimed = __activemask();
64
65 do
66 {
67 // __ffs(): find the position of the least

significant bit set to 1 in a 32 bit
integer

68 // return 0 if no bit is set
69 // the position is 1-based rather than 0-based
70 int src = __ffs(unclaimed) - 1;
71
72 HelperUnionFP64 addressUnion = {address};
73 HelperUnionFP64 tempUnion;
74
75 // --> __shfl_sync(): returns the value of var

held by the thread whose ID is given by
srcLane.

76 // If width is less than warpSize then each
subsection of the warp behaves as

77 // a separate entity with a starting logical
lane ID of 0. If srcLane is

78 // outside the range [0:width-1], the value
returned corresponds to the value

79 // of var held by the srcLane modulo width (
i.e. within the same subsection).

80 // since cuda 9, __shfl_sync() can operate
on 64-bit data directly.

81 tempUnion.helper = __shfl_sync(__activemask(),
addressUnion.helper, src);

82
83 // check if the addresses from the source lane

is the same with self’s
84 is_peer = (addressUnion.address == tempUnion.

address);
85
86 // determine which lanes have a match with

source
87 // essentially broadcast the results among

active threads
88 // --> __ballot_sync(): evaluate predicate for

all non-exited threads in mask and return
89 // an integer whose Nth bit is set if and

only if predicate evaluates to non-zero
90 // for the Nth thread of the warp and the

Nth thread is active.
91 peers = __ballot_sync(__activemask(), is_peer);
92
93 // remove lanes with the same address with

source
94 // using xor (bit set if x and y is different)
95 unclaimed ˆ= peers;
96 }
97 // quit when the source lane has the same address to

be updated with self’s
98 // in the special case where all lanes have their

unique address, peer will just be self
99 while(!is_peer);

100
101 // step 2: reduce peers. results are stored in the

lowest peers
102 // find the peer with lowest lane index
103 int first = __ffs(peers) - 1;
104
105 // calculate relative index among peers
106 // __popc(): count the number of bits that are set

to 1 in a 32 bit integer
107 int rel_pos = __popc(peers << (32 - lane));
108
109 // ignore peers with lower (or same) lane index

7



110 peers &= (0xfffffffe << lane);
111
112 while(__any_sync(__activemask(), peers))
113 {
114 // find next-highest remaining peer
115 int next = __ffs(peers);
116
117 // Threads may only read data from another

thread which is actively participating in
the __shfl_sync() command.

118 // If the target thread is inactive , the
retrieved value is undefined.

119 // This is why the code below is not placed in
the if(next) block

120 double temp = __shfl_sync(__activemask(), val,
next - 1);

121
122 // only add if next-highest remaining peer

exists
123 if(next)
124 {
125 val += temp;
126 }
127
128 // results in lanes with an odd relative index

will be discarded
129 // find if self has an odd index
130 unsigned int done = rel_pos & 1;
131
132 // remove all peers with an odd relative index
133 peers &= ˜__ballot_sync(__activemask(), done);
134
135 // use relative index as iteration counter
136 rel_pos >>= 1;
137 }
138
139 // step 3: Nvidia’s compare-and-swap algorithm
140 // only peers with the lowest index (defined as the

"leader threads") perform atomic operation
141 unsigned long long int* address_as_ull = (unsigned

long long int*)address;
142 HelperUnion2FP64 old, assumed, temp;
143 if(lane == first)
144 {
145 // union version
146 old.helper = *address_as_ull;
147 do
148 {
149 assumed = old;
150 temp = assumed;
151 temp.data = val + assumed.data;
152 old.helper = atomicCAS(address_as_ull ,

assumed.helper, temp.helper);
153 }
154 while (assumed.helper != old.helper);
155 }
156
157 return old.data;
158 #endif
159 }
160
161 __device__ __forceinline__ double atomicAddFast(double*

address, double val)
162 {
163 // for the dated Fermi GPUs
164 #if __CUDA_ARCH__ < 300
165 return atomicAddFP64CAS(address, val);
166
167 // for the latest Pascal, Volta GPUs with hardware

support for FP64 atomic add
168 #elif __CUDA_ARCH__ >= 600
169 return atomicAdd(address, val);
170
171 // for the Kepler and Maxwell GPUs
172 #else
173 return atomicAddFP64WAG(address, val);
174 #endif
175 }
176
177 #endif // __CUDACC__
178 } // end namespace UtilityGPU

Listing 2. Unoptimized GPU implementation of Kahan
summation based on CAS.

1 // CUDA-C++ code. Require nvcc 9.0 or newer.
2 namespace UtilityGPU
3 {
4 #if defined(__CUDACC__)
5 __device__ __forceinline__ float2

atomicAddKahanUnoptimized(float2* address, float
val)

6 {
7 union HelperUnionFP32
8 {
9 float2 data;

10 unsigned long long int helper;
11 };
12
13 unsigned long long int* address_as_ull = (unsigned

long long int*)address;
14 HelperUnionFP32 old, assumed, temp;
15
16 old.helper = *address_as_ull;
17
18 do
19 {
20 assumed = old;
21 temp = assumed;
22
23 float y = val - temp.data.y;
24 float t = temp.data.x + y; // accumulate high-

order part
25 temp.data.y = (t - temp.data.x) - y; // recover

lower-order part
26 temp.data.x = t;
27
28 old.helper = atomicCAS(address_as_ull , assumed.

helper, temp.helper);
29 }
30 while(assumed.helper != old.helper);
31
32 return old.data;
33 }
34 #endif // __CUDACC__
35 } // end namespace UtilityGPU

Listing 3. Optimized GPU implementation of Kahan sum-
mation based on CAS. It is a combination of Listing 1 and
Listing 2 such that only the “leader threads” in each warp
update the tally and error term.

1 // CUDA-C++ code. Require nvcc 9.0 or newer.
2 namespace UtilityGPU
3 {
4 #if defined(__CUDACC__)
5 __device__ __forceinline__ float2 atomicAddKahan(float2*

address, float val)
6 {
7 union HelperUnionFP32
8 {
9 float2* address;

10 double helper;
11 };
12
13 union HelperUnion3FP32
14 {
15 float2 data;
16 unsigned long long int helper;
17 };
18
19 unsigned int lane;
20 asm volatile("mov.u32 %0, %laneid;" : "=r"(lane));
21 unsigned int peers = 0;
22 bool is_peer;
23 unsigned unclaimed = __activemask();
24

8



25 do
26 {
27 int src = __ffs(unclaimed) - 1;
28 HelperUnionFP32 addressUnion = {address};
29 HelperUnionFP32 tempUnion;
30 tempUnion.helper = __shfl_sync(__activemask(),

addressUnion.helper, src);
31 is_peer = (addressUnion.address == tempUnion.

address);
32 peers = __ballot_sync(__activemask(), is_peer);
33 unclaimed ˆ= peers;
34 }
35 while(!is_peer);
36 int first = __ffs(peers)-1;
37 int rel_pos = __popc(peers << (32 - lane));
38 peers &= (0xfffffffe << lane);
39 while(__any_sync(__activemask(), peers))
40 {
41 int next = __ffs(peers);
42 float temp = __shfl_sync(__activemask(), val,

next - 1);
43 if(next)
44 {
45 val += temp;
46 }
47 unsigned int done = rel_pos & 1;
48 peers &= ˜__ballot_sync(__activemask(), done);
49 rel_pos >>= 1;
50 }
51
52 unsigned long long int* address_as_ull = (unsigned

long long int*)address;
53 HelperUnion3FP32 old, assumed, temp;
54 if(lane == first)
55 {
56 old.helper = *address_as_ull;
57 do
58 {
59 assumed = old;
60 temp = assumed;
61 float y = val - temp.data.y;
62 float t = temp.data.x + y; // accumulate

high-order part
63 temp.data.y = (t - temp.data.x) - y; //

recover lower-order part
64 temp.data.x = t;
65 old.helper = atomicCAS(address_as_ull ,

assumed.helper, temp.helper);
66 }
67 while(assumed.helper != old.helper);
68 }
69
70 return old.data;
71 }
72 #endif // __CUDACC__
73 } // end namespace UtilityGPU

9

View publication statsView publication stats

https://www.researchgate.net/publication/327540610

	Introduction
	Background
	Related work

	Materials and Methods
	Overview
	Atomic-add tally methods with reduced numerical errors on GPUs
	Compare-and-swap method (CAS)
	Warp-aggregated method (WAG)
	Kahan summation method (KAS)
	Hardware-based method (HB)
	WAG in combination of HB (WIB)

	Test cases and hardware

	Results
	Performance comparison of atomic-add methods
	Performance and accuracy comparison of single-precision tally and KAS

	Discussion and Conclusion

