DEVELOPMENT OF ARCHER — A PARALLEL
MONTE CARLO RADIATION TRANSPORT CODE —
FOR X-RAY CT DOSE CALCULATIONS USING GPU

AND COPROCESSOR TECHNOLOGIES

By
Tianyu Liu
A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
Major Subject: NUCLEAR ENGINEERING AND SCIENCE

Approved by the
Examining Committee:

Xie George Xu, Thesis Adviser

Peter F. Caracappa, Member

Christopher D. Carothers, Member

Yaron Danon, Member

Wei Ji, Member

Rensselaer Polytechnic Institute
Troy, New York

July 2014
(For Graduation August 2014)

(© Copyright 2014
by
Tianyu Liu
All Rights Reserved

11

CONTENTS

LIST OF TABLES vi
LIST OF FIGURES viii
ACKNOWLEDGMENT ix
ABSTRACT . . . xi
1. INTRODUCTIONo e 1
1.1 Background 1

1.2 Clinical Significance of CT Dose Management 2

1.3 Monte Carlo Methods 4
1.4 New Parallel Computing Paradigm 7
1.4.1 Advantage of Hardware Accelerators 8

1.4.2 GPU Architecture and Programming Model 10

1.4.3 Coprocessor Architecture and Programming Model 13

1.5 Literature Review o 15

1.6 Objectives 16

2. MATERIALS AND METHODS 17
21 OVerview 18
2.2 Hardware Specifications 21
2.3 Monte Carlo Methods 22
2.3.1 Theory 22

2.3.2 Radiation Transport Simulation in ARCHER for CT 24

2.4 Radiation Dose Calculations 27
2.4.1 Dose Tallies in ARCHER for CT 27

2.4.2 Conversion of Simulated Dose to Absolute Dose 30

2.5 CT Scanner and Patient Modeling 31
2.5.1 MDCT Scanner Model 31

2.5.2 Anthropomorphic Phantoms 36

2.5.3 Patient-Specific Phantoms 36

2.6 Software Development 40
2.6.1 General Flowchart of ARCHER for CT 40

11

3.

4.

2.6.2 Development of ARCHERcpy for CT 41

2.6.3 Development of ARCHERgpy for CT 41
2.6.4 Development of ARCHERcop for CT 45
2.6.5 Development Tools 46
2.6.6 Fair Comparison Considerations 49

2.7 Verification and Validation 50
2.7.1 Terminology 50

2.7.2 Verification of ARCHER for CT with MCNPX 51
2.7.3 Validation of ARCHER for CT with Experiment 52

2.8 Performance Analysis 55
2.8.1 Computing Efficiency 55
2.8.1.1 Performance Comparison of Different Codes 55

2.8.1.2 Performance Comparison with Contemporary Study 55

2.8.2 Energy Efficiency oL 56
2.8.3 Cost Effectiveness 58
2.8.4 Profiling 59

2.9 Clinical Applications 60
RESULTS AND DISCUSSION 61
3.1 Verification and Validation 61
3.1.1 Verification of ARCHER for CT with MCNPX 61
3.1.2 Validation of ARCHER for CT with Experiment 63

3.2 Performance Analysis 68
3.2.1 Computing Efficiency 68
3.2.1.1 Performance Comparison of Different Codes 68

3.2.1.2 Performance Comparison with Contemporary Study 71

3.2.2 Energy Efficiencyo 71
3.2.3 Cost Effectiveness L 75
324 Profiling 7

3.3 Clinical Applications 80
3.4 Long-term Development of ARCHER for CT 82
CONCLUSIONS e 84
4.1 Summary ... o. oL 84
4.2 Future Work 86

v

REFERENCES o e 88

APPENDICES

A. VERIFICATION OF ARCHER WITH MCNP 102
A.1 73 kg RPI adult male phantom 102
A.2 142 kg RPI adult male phantom 104
A.3 122 kg RPI adult female phantom 106
A.4 RPI 9-month pregnant female phantom 108

B. LIST OF JOURNAL AND CONFERENCE PAPERS 110
B.1 Journals 110
B.2 Conference Abstracts and Papers, 110

1.1
1.2
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
3.1
3.2

3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10

3.11

LIST OF TABLES

Memory of Kepler GPU 12
Programming models supported by the GPU and coprocessor 13
Computing units of the heterogeneous computing system 22
Conversion of Hounsfield Unit into material type 38
Conversion of Hounsfield Unit into mass density 40
Compilers 47
Script interpretero 48
Compiler options for fast floating point operations 50
Platform-unique compiler options 50

Geometric information of the phantoms used in ARCHER verification . 52
Comparison of the dosimetric results calculated by ARCHER and MCNP 63

Validation of ARCHER with the experiment using the human cadaver,
100kVp/120kVp, fixed 300mA tube current 66

Validation of ARCHER with the experiment using the ATOM physical
phantom, 120kVp, tube current modulation 66

Comparison of half value layers in the isocenter by experiments and
simulations 67

Computation time of different Monte Carlo codes running on different
hardware architectures for a whole-body CT scan simulation 69

Performance comparison with other study 72

Power and energy use by different codes on different hardware platforms 74

Parameters requisite for cost effectiveness evaluation 76
Instruction statistics 78
Memory statistics Lo 80

Computing efficiency of ARCHERgpy in the clinical 3-D dose distribu-
tion calculations 82

vi

Al
A2

A3

A4

Verification of ARCHER with MCNP using 73 kg RPI adult male phantom 102

Verification of ARCHER with MCNP using 142 kg RPI adult male
phantomo 104

Verification of ARCHER with MCNP using 122 kg RPI adult female
phantom 106

Verification of ARCHER with MCNP using RPI 9-month pregnant fe-
male phantom oL 108

vil

1.1

1.2
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.1

3.2

3.3

3.4

3.5
3.6
3.7
3.8

3.9

LIST OF FIGURES

Statistics of Top 500 supercomputers worldwide using hardware accel-

Erators
Performance of the Top 500 supercomputers over the years
The generic model of a heterogeneous computing system
General flowchart of ARCHER
Relationship between the ARCHER code and the hardware platform . .
A photograph of our heterogeneous computing server
X-ray source modelo
Close-up of the X-ray source model
Bowtie filer model o
DICOM data structure
Cadaver and ATOM phantom

The influence of parallel and atomic summation methods over the ac-
curacy of ARCHERgpy in organ dose calculations

Validation of ARCHER with the experiment using the human cadaver,
120kVp and 100kVp, fixed 300mA tube current

Performance of ARCHERgpy in a strong scaling problem using 1~6
Nvidia M2090 GPUs

Comparison of the power draw by ARCHER variants on different plat-
forms

MFLOPS per Watt
Normalized cost effectiveness factor
Statistics of instruction stalls

Calculated CT dose distributions with the prostate, rectum, urinary
bladder and femoral head outlined in green

ARCHER is envisioned as a versatile test bed for the modern and future
parallel computing platforms

ACKNOWLEDGMENT

I have had the great honor to be part of Rensselaer Radiation Measurement &
Dosimetry Group (RRMDG) at Rensselaer Polytechnic Institute (RPI), and work
with a team of the most diligent and intelligent people I have ever met. To me these
5-year research experience is an invaluable treasure to be cherished in my life.

I would express my deep sense of gratitude to Professor X. George Xu, the
leader of RRMDG and my research advisor. He has a pioneer spirit with considerable
foresight and courage, and always leads me to new, challenging areas that few have
trodden before. 1 especially appreciate the abundant research resources he has
provided to me, and a great deal of advices to help me think deeply and broadly
and act wisely and efficiently.

I am profoundly indebted to my doctoral committee members, including Pro-
fessor Christopher D. Carothers, Professor Peter F. Caracappa, Professor Wei Ji
and Professor Yaron Danon, for their guidance and encouragement. Special thanks
are due to Professor Mark S. Shephard for his extremely insightful advices on this
research. Many thanks are given to Professor Forrest B. Brown from Los Alamos
National Laboratory for the enormous help with algorithm design. He is extraordi-
narily nice and outstandingly knowledgeable, and is the kind of scientist I want to
be.

I would like to thank the physicists, clinicians and researchers from Mas-
sachusetts General Hospital, including Dr. Bob Liu, M.D. Mannudeep K. Kalra,
Dr. Jim Q. Shi, Dr. Da Zhang, Dr. Xinhua Li, Dr. Wenli Cai for the significant
amount of efforts and time they have contributed to this project.

Besides, I would like to thank my colleagues and friends (alphabetical order):
Dr. Aiping Ding, Dr. Xining Du, Mr. Yiming Gao, Mr. Deyang Gu, Dr. Jianwei
Gu, Dr. Bin Han, Dr. Hua Li, Dr. Yanheng Li, Dr. Chao Liang, Miss Wenyan Liu,
Dr. Matthew Mille, Dr. Yong Hum Na, Miss Elise Noel, Miss Theresa B. Tram
Phamduy, Mr. Matthew Riblett, Dr. Lin Su, Mr. Justin Vazquez and Mr. Noah
Wolfe. They have not only helped me tremendously with my research but also with

1X

my life.

I am also particularly grateful to those who have offered altruistic, unreserved
help to me. They include Dr. Bart Willems from Atipa Technologies who provided
valuable instructions on Linux administration, the anonymous expert with username
“talonmies” on Stackoverflow who has enlightened me as to GPU programming with
his profound knowledge.

Much appreciation is owed to Health Physics Society (HPS) which granted
me 2010-2011 Richard J. Burk, Jr. Fellowship, to Nvidia Corporation which made
generous hardware donation to our research group, and to the National Institute of
Biomedical Imaging and Bioengineering (NIBIB) which provided financial support
to this project (ROIEB015478).

My research would not be possible without the constant, unswerving support
from my family. I owe a debt of gratitude to my parents Bing Liu and Xiuping Na,
and my fiancée Ning Chen. Ning’s Mike Wazowski’s style of optimism is contagious

and has helped me overcome many difficulties in my research.

ABSTRACT

Monte Carlo methods are the gold standard in radiation dose calculations with het-
erogeneous patient geometries and complicated irradiation conditions such as multi-
detector CT scan. The long computation time has historically prevented them from
becoming a routine clinic tool. The emerging hardware accelerators have created op-
portunities to speed up the computations significantly. They have the advantages of
high computing power and high energy efficiency that are particularly suited for per-
forming parallel tasks. This research represents our efforts to understand and utilize
such technology in the context of radiation dosimetry, and is focused on developing
and testing a new parallel Monte Carlo package, named ARCHER, for patient-
specific CT dose calculations using three types of hardware platforms, including
the conventional multi-core CPU and two most competitive hardware accelerators
— the Nvidia’s graphics processing unit (GPU) and Intel’s Xeon Phi coprocessor.
ARCHER includes three variants, ARCHERcpy, ARCHERGpy and ARCHER cop,
which are tested on a 6-core Intel Xeon X5650 CPU, three Nvidia GPUs (M2090,
K20, K40), and an Intel Xeon Phi 5110p coprocessor, respectively. ARCHER has
a built-in model of the GE LightSpeed Pro 16 CT scanner and a library of compu-
tational human phantoms that allow realistic scan protocols to be simulated. For a
fair code comparison, all the variants are carefully optimized and fine-tuned to their
specific hardware platforms. Important performance factors such as the accuracy,
computing efficiency, scalability and energy efficiency of the codes are investigated.
The accuracy tests include the benchmark of the Monte Carlo transport kernels
against the production Monte Carlo code MCNPX, and the benchmark of the sim-
ulation models against the experiment using a real human subject. In the first
test, ARCHER is in excellent agreement with MCNPX using the same geometries
and similar physics. In the second test, discrepancy up to 29% from the experi-
ment is observed, encouraging us to reinvestigate the simulation models such as the
CT scanner model and the algorithm to automatically generate the phantom from

CT images. In the computing efficiency test, compared to the parallel CPU code,

X1

ARCHERgpy is found to be faster by a factor of 5.40 ~ 10.89, while ARCHERcop
is by a factor of 3.37. ARCHERgpy demonstrates good scalability when the GPU
stream is implemented. The GPU platform is found to be the most energy-efficient,
consuming less amount of energy than the CPU by a factor of 3.68 ~ 8.01, while
the coprocessor is better than the CPU by a factor of 2.24. Meanwhile, both the
GPU and coprocessor platforms are found to be more cost effective than the CPU.
Furthermore, ARCHERgpy is applied to a clinical case to compute imaging dose
distributions in a patient-specific abdominal CT scan and exhibits good computing
efficiency. This research shows that both the GPU and the coprocessor technology
can effectively boost the performance of Monte Carlo simulations, that the GPU
takes the clear lead, and that the developed code ARCHER is an important step

toward patient-specific C'T dose calculations.

xii

CHAPTER 1
INTRODUCTION

“By an incredible coincidence, Gamow and FEdward Condon, who had
discovered simultaneously and independently the explanation of radioac-
tivity (one in Russia, the other in this country), came to spend the the
last ten years of their lives within a hundred yards of each other in Boul-

”

der.

—Ulam, Stanislaw

1.1 Background

Clinical use of X-ray Computed Tomography (CT) — an important diagnos-
tic imaging tool — has continued to grow on a yearly basis. This trend has led
to a significant increase in the radiation dose delivered to the patient population,
giving rise to a mounting concern over the public health. The radiology community
has called for the development of new tools to more accurately quantify and report
patient-specific dose for C'T scan procedures. The Monte Carlo methods are one of
the ideal candidates, being in general deemed as the gold standard in radiation dose
calculations due to its high accuracy. It allows exact modelling of three-dimensional,
heterogeneous geometries, includes precise mathematical models for radiation parti-

cle interactions with matter, and adopts a cross-section representation of the physics

Portions of this chapter previously appeared as: Liu, T., Ji, W. & Xu, X. G. (2013), Devel-
opment of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi
architecture, in ‘International Conference on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013)’, Sun Valley, ID, pp. 1199-1210.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).

that is as accurate as experiments permit (Brown & Martin 1984). Nonetheless, us-
ing Monte Carlo methods, the computation time to obtain results with acceptable
statistical uncertainties is usually very long, making a routine use in a clinical setting
impractical. The computation can be effectively accelerated by developing parallel
Monte Carlo codes. Traditional parallel codes execute on the systems composed of
central processing units (CPU). Recent advance in High Performance Computing
(HPC) industry has introduced new paradigms for parallel computing — the hard-
ware accelerators such as the graphics processing unit (GPU) and the coprocessor.
They have the distinctive advantage of high computing power and high energy ef-
ficiency. Existing production codes, however, cannot be directly run on them. To
harness this emerging technology for accurate and fast CT dose calculations, it is
necessary to redevelop the Monte Carlo code and optimize it to the unique GPU or
coprocessor architecture (Liu et al. 2013). This is the central task of this doctoral

research.

1.2 Clinical Significance of CT Dose Management

Since its inception some 40 years ago, computed tomography (CT) has become
one of the most widely used medical imaging tools. The number of CT scans per-
formed each year has been steadily increasing by a factor of 10% to 15% (Amis Jr
et al. 2007, Brenner & Hall 2007, NCRP 2009, McCollough et al. 2008). CT scans
now account for about one in five radiation-based imaging procedures and these
scans are responsible for nearly 50% of the radiation exposure from medical imaging
in the U.S. (NCRP 2009, Stern 2007, Stern et al. 2000). Over the years, CT has
played a significant role in cancer treatment with three-dimensional anatomical data
routinely incorporated into treatment planning for radiation oncology. From 1995
to 2007, the use of CT scans in emergency department visits has increased by ap-
proximately 6-fold in the U.S. (Larson et al. 2011). Associated with this popularity
is the radiation dose level to the population — the U.S. annual per capita dose by
CT scans has increased from 0.03 mSv to 1.47 mSv during that time (NCRP 2009).

For years, controversy about the potential risk of induced carcinogenic effects

has surrounded clinical practices involving X-ray radiography and CT as is men-

tioned in Brenner (2002), Brenner & Hall (2007) and National Research Council
(2005, pp. 65-90). The risk to an individual patient of developing a radiation-related
cancer from any single CT procedure is estimated to be relatively small according to
data derived from nuclear workers and atomic bomb survivors (Brenner & Hall 2007,
NCRP 2009). However, there is uncertainty in applying these high-dose and high-
dose rate radiobiological data to medical radiation exposures such as CT. Recent
epidemiological studies on CT patients have provided more relevant information.
One study reported by Berrington de Gonzélez & Darby (2004) hypothesized that
medical exposures between 1991 and 1996 might be responsible for approximately
1% of all cancer incidences in the United States during that period. The issue of
radiation risk is of even greater importance for pregnant and pediatric patients,
since younger patients are known to be considerably more radiosensitive. A study
by Pearce et al. (2012) found that a dose of 50 mGy from CT tripled the risk of
leukaemia and a dose of 60 mGy tripled the risk of brain cancer among the 178,604
young patients who received CT scans from 1985 ~ 2002 from 81 hospitals in Great
Britain. The increased risk to young patients was also observed in a study by Math-
ews et al. (2013) that analyzed 10.9 million Australian patients who were between
0 to 19 years old.

The “As Low As Reasonably Achievable” (ALARA) principle is widely adopted
in industrial and medical radiation protection as a prudent measure. To address the
increasing trend in CT exposure, professional societies have implemented a num-
ber of aggressive initiatives (Amis Jr et al. 2007, Goske et al. 2008, McCollough
et al. 2008, ICRP 2007, NCRP 2009). In 2011, a workshop cosponsored by the
National Institute of Biomedical Imaging and Bioengineering (NIBIB) was held to
identify possible research steps towards reducing the average patient CT exposure
to sub-mSv levels and, subsequently, a special UO1 research program was launched
by NIBIB in 2012 (NIH. 2012).

Current CT scanners only report CT Dose Index (CTDI) values and dose
length product (DLP) that are based on data pre-measured in tissue-equivalent
cylinders (McCollough et al. 2008). Recent studies have concluded that CTDIs and
DLPs are poor surrogates for patient CT doses (Li et al. 2010, 2011). In an attempt

to move away from the CTDI concept toward patient-relevant CT dose reporting,
AAPM recently designed Size-Specific Dose Estimates (SSDE) (Boone et al. 2011).
The use of the unit “mSv” in the NIBIB’s research initiative implies the use of
the “effective dose” that was originally defined by the ICRP for estimating whole-
body stochastic risk to workers. In the ICRP radiation protection dose system,
estimates of radiation levels are based on the absorbed dose to radiosensitive organs
(instead of “dose at a point” in the body) for which radiation risk information exists
(Health Physics Society. 2010, ICRP 2007). Correct uses of “effective dose” for CT
imaging have been discussed (see for examples, McCollough & Schueler (2000),
MecNitt-Gray (2002), Brenner & Huda (2008), Xu et al. (2008)). The capability of
patient-specific organ dose assessment for X-ray based imaging procedures has been
proposed before (Li et al. 2010, 2011) and is clearly a trend in radiology research.
Several software tools are available for CT organ dose and effective dose es-
timate, such as ImPACT (Lewis 2005) and VirtualDose (Ding et al. 20125, Vir-
tual Phantoms Inc. 2013). In principle, they can retrospectively re-construct organ
doses based on pre-calculated database using the population-averaged computa-
tional phantoms (Xu & Eckerma 2010, pp. 347-377). VirtualDose, for example,
utilizes an extensive organ dose database derived from time-consuming Monte Carlo
calculations for a library of patient phantoms representing pregnant and obese adult
patients as well as age-specific children (Virtual Phantoms Inc. 2013). These tools
cannot perform accurate, patient-specific dose calculations, and will be well com-
plemented by a code with the capability of efficient onsite Monte Carlo simulations

(Liu et al. 2014a), which is addressed in this research.

1.3 Monte Carlo Methods

In radiation transport, the Monte Carlo methods are a computational algo-
rithm that uses repeated random sampling to create the full genealogical histories
of particles, and obtains numerical estimate of certain quantities, such as flux or
fluence, that follow usually unknown probability distributions. The use of random
sampling dates back to 18th century (X-5 Monte Carlo Team 2003a). Buffon (1777)
posed and solved the Buffon’s needle problem, which asks the probability of a nee-

dle landing on a line, given a floor marked with equidistant parallel lines. The
result can be used to experimentally estimate w. The problem was later extended
by Buffon and Laplace to the Buffon-Laplace needle problem (Arnow 1994), where
the texture of the floor was changed from parallel lines to grids, and the proba-
bility of a needle landing on any one line of the grid was sought. In early 1900s
Kelvin (1901) applied the random sampling to integral calculations in thermody-
namics. In 1930s Fermi (X-5 Monte Carlo Team 2003a) invented a form of Monte
Carlo method for neutron moderation study. During World War II, a team of em-
inent scientists, including Fermi, Ulam, von Neumann, Metropolis were working
at Los Alamos on the Manhattan Project to develop the first atomic bomb (X-5
Monte Carlo Team 2003a). Their joint effort for neutronic computation continued
after the war and was significantly encouraged by the advent of the first electronic
computer Electronic Numerical Integrator And Computer (ENIAC). The computa-
tionally expensive random sampling procedure previously deemed impractical was
now able to be put into practice, and was formally renamed as Monte Carlo method
(X-5 Monte Carlo Team 2003a, Metropolis 1987). In 1947, von Neumann devised
the first Monte Carlo program to solve neutron diffusion and multiplication prob-
lems on the ENTAC (X-5 Monte Carlo Team 2003a). Since then, the Monte Carlo
method and radiation transport code have rapidly evolved. From 1963 to today, a
general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled
neutron/photon/electron code called Monte Carlo N-Particle (MCNP) have been de-
veloped and upgraded by Los Alamos National Laboratory (X-5 Monte Carlo Team
2003a). Two renowned versions MCNP5 and MCNPX (Pelowitz 2008) have recently
been merged into MCNPG6 (Pelowitz 2013b). The code has nowadays become an in-
ternational standard for a wide spectrum of applications (Selcow & McKinney 2000),
including radiation protection and dosimetry (Ding et al. 2012b), radiation shield-
ing (El-Guebaly 1997), radiography (Kardjilov et al. 2005), medical physics (Rogers
2006), nuclear criticality safety (Seker & Colak 2003), detector design and analysis
(Childress & Miller 2002), nuclear oil well logging (Serov et al. 1998), accelerator
target design (Overberg et al. 1999), fission and fusion reactor design (Wu 2006),

decontamination and decommissioning (Love et al. 1995), nuclear waste storage and

disposal (Bayoumi et al. 2012), etc. Several other Monte Carlo codes also have large
user base among medical physics community. They are Geant4 (Agostinelli et al.
2003), EGSnrc (Kawrakow & Rogers 2000), Penelope (Baré et al. 1995) and Fluka
(Ferrari et al. 2005).

The Boltzmann transport equation can be solved by the Monte Carlo methods
and the deterministic methods (such as discrete ordinates, integral transport, finite
difference and finite element methods (Brown & Martin 1984)). The determinis-
tic methods have an inherent disadvantage that discretization of the “time-space-
angle-energy” phase space introduces approximations and computational systematic
errors. Besides, the problem geometry and the level of detail to describe the interac-
tions may be subject to a priori restrictions (Brown & Martin 1984). In contrast, the
Monte Carlo methods do not have such disadvantages. According to Brown & Mar-
tin (1984) and Lewis & Miller (1984, pp. 296-356), the Monte Carlo methods adopt
highly accurate mathematical models for particle interactions with matter, apply
continuous treatment of phase space that obviates discretization errors, and per-
mit exact modelling of three-dimensional, heterogeneous geometries. In this regard,
the Monte Carlo methods are considered the most general and powerful numerical
method available for solving radiation transport problems (Brown & Martin 1984).

The inherent statistical error of the result by Monte Carlo calculations can be
controlled to an arbitrarily low level by simulating sufficiently many particles. In
CT dosimetry study, for instance, it is a common practice to reduce the statistical
uncertainty to 1% and below, which is often more precise than the error of experi-
mentally obtained results. However, the computation time required to achieve this
level of precision can be very long. This constitutes the only drawback of Monte
Carlo methods (Brown & Martin 1984) and hinders them from being applied to
routine calculations beyond a benchmark tool alone.

The Monte Carlo computer programs in general are embarrassingly parallel,
meaning that the simulation task for individual particle history can often be carried
out independently of one another with very small amount of communication between
the tasks. Because of this attribute, the time-consuming sequential run can naturally

benefit from parallel computing techniques. In 1980s, the “vectorized” MC codes

were elaborately designed by Brown & Martin (1984) and Bobrowicz et al. (1984) to
run specifically on the vector computers of the time. In 1990s, the Parallel Virtual
Machine (PVM) (Geist et al. 1994, pp. 93-135) and Message Passing Interface (MPI)
(Gropp 2002) enabled parallelism across dozens of processors. Since 2000s, the
invention of multi-core processors has allowed multiple threads to run concurrently
on different cores of the same processor. To take advantage of the large-scale High
Performance Computing (HPC) systems, many of the existing production codes have
been reworked using a combination of the threading and MPI paradigms (Brown
2011). In addition, use of the network-based distributed computing system such as
the clouding computing has also been reported lately (Wang et al. 2011, Miras et al.
2013).

1.4 New Parallel Computing Paradigm

In recent years, technical advances in the hardware architecture has intro-
duced an alternative approach — to implement the Monte Carlo calculations on the
heterogeneous computing systems. These systems feature the hardware accelerators
attached to the conventional central processing units (CPU) (Brown 2011). Exam-
ples are the graphics processing unit (GPU), coprocessor, Field-Programmable Gate
Array (FPGA), Cell processor, etc. They are playing an increasingly important role
in HPC community and have been adopted in a growing number of supercomputer
systems worldwide according to the statistics from the Top 500 list (Top500. 2013),
illustrated in figure 1.1. By November 2013, 53 out of the top 500 supercomputer
have been boosted by them; the No. 1 supercomputer Tianhe-2 (also known as
MilkyWay-2) hosted by China National Super Computer Center has used 48,000
Intel Xeon Phi 31S1P coprocessors, while the No. 2 supercomputer Titan hosted by
Department of Energy (DOE), DOE Office of Science (SC) and Oak Ridge National
Laboratory has used 18,688 NVIDIA K20x GPUs (Top500. 2013). The academic
publications on hardware accelerator-based Monte Carlo calculations is also on an

uptrend.

[=2]
o

(4]
o

B
o

w
o

Number of supercomputers

L]
o

=
o

05\/ 71, 05/ 71, 06‘/ 77, 06‘/ 77, 06‘/ 77, 06‘/ 77 06‘/ 77, 06‘/ 77,
9006 9006 <0 =g 9008 900(9 9009 9009 ?o,o 90,0 90,7 90,7 ?o,e 90,\; 9073 90,3

o
1]
o]
1]
u]
]
u]
1]
]

miotal @Nvidia GPU m®intelcoprocessor BAMDGPU 0OIBMcell @ClearSpeed processor

Figure 1.1: Statistics of Top 500 supercomputers worldwide (Top500.
2013) using hardware accelerators. Since 2006 the hardware
accelerators have been utilized by a growing number of sys-
tems. The Nvidia GPU and Intel Xeon Phi coprocessor stand
out as the two most used ones.

1.4.1 Advantage of Hardware Accelerators

The Nvidia GPU and Intel Xeon Phi coprocessor are distinguished from other
accelerators by their rapid development and expanding domain of applications. One
of their main advantages is the high energy efficiency, i.e. the ratio of the delivered
computing performance to the consumed electric power. In the processor man-
ufacturing industry, there is a heuristic called Moore’s law (Moore 1998), which
states that the number of transistors on integrated circuits doubles approximately
every two years. It projects that we will arrive at the exascale computing era by
around 2020, by which time the No. 1 supercomputer can have a performance of
at least 1 exaFLOPS (10'® FLOPS). In developing this system, there will be four
unprecedented challenges identified by Kogge et al. (2008), including energy and
power, memory and storage, concurrency and locality, and resiliency, and the energy
and power problem is given the top priority. Because of that, the energy-efficient
GPU and coprocessor are considered a special candidate to enable the future su-
percomputer systems. In fact, by November 2013, the first 10 most energy-efficient
supercomputers worldwide on the Green 500 list (Green500. 2013) have all used
Nvidia GPUs, and No. 37 ~ No. 42 supercomputers have all used Intel Xeon Phi

COProcessors.

100E Flops T T T
e sum : :

10E FlopsH

1E FlopsH

100P Flops|-- -
10P Flops -
1P Flopst-
100T Flopst

Rmax

10T Flopst
1T Flops}$
100G Flops 2
10G Flopst-

1G Flops

100M Flops

1995 2000 2005 2010 2015 2020

Figure 1.2: Performance of Top 500 supercomputers over the years
(Top500. 2013). R, refers to the maximal LINPACK per-
formance achieved in unit of FLoating-point Operations Per
Second (FLOPS). The increase in the performance of No. 1,
No. 500 and the total performance nowadays continues to
follow Moore’s Law.

Another main advantage of the hardware accelerators is the high computing
power — large FLOPS to be specifically — they are able to deliver on a single device.
The Moore’s law has been proven valid for approximately 50 years, as can partly be
reflected by the trend of the Top 500 supercomputers’ maximum performance over
time in figure 1.2. Due to technical and economic barriers, however, this law has
been challenged and will unlikely hold true indefinitely (Mack 2011). None the less,
the GPU and coprocessor could add a significant amount of computing power to
make the overall system performance keep pace with the projection of Moore’s law,
and thus arguably extend its validity to a longer period of time, as is suggested by
Dally (2010) and Jeffers & Reinders (2013, pp. 1-22). For example, the LINPACK
benchmark tests (Phillips & Fatica 2010, Intel. 2013f) performed by Nvidia and

Intel demonstrated that on a single node with 2 CPUs and 2 hardware accelerators

10

as the additional computing units, the achieved maximal performance of the whole

heterogeneous system was 5.6 ~ 8.2 times higher than that of 2 CPUs alone.

1.4.2 GPU Architecture and Programming Model

The graphics processing unit (GPU) was originally invented by Nvidia in 1999
(Nvidia. 2011). At that time it was a fixed function graphics pipeline used typically
for gaming purposes to process two types of graphics-specific programs called vertex
shader and pixel shader (Lindholm et al. 2008). Since then a rapid development of
the GPU technology has taken place. In around 2006, Nvidia introduced a paral-
lel computing platform called Compute Unified Device Architecture (CUDA) that
encompassed significant innovations on the compute architecture (hardware) and
programmability (software) of the GPU (Nvidia. 2011). CUDA enabled the GPU
to become more general-purpose such that it can solve wider range of scientific par-
allel problems beyond computer graphics alone. It also allowed the programmers
to write code in the common, high-level programming languages such as C/C++
and Fortran instead of the specialized graphics application programming interfaces
(API) (Nvidia. 2011). So far the CUDA GPU has had several generations, including
Tesla, Fermi, Kepler, Maxwell and Pascal, each being accentuated by an additional
technical innovation. For example, the first Tesla generation (released in ~ 2008)
introduced CUDA itself; the past Fermi generation (released in ~ 2010) supported
64-bit floating point operations, expanding the range of GPU applications; the cur-
rent Kepler generation (released in ~ 2013) introduces dynamic parallelism, reducing
the communication cost between CPU and GPU; the upcoming Maxwell generation
(expected to be released in ~ late 2014) will provide compatibility with Microsoft’s
new multimedia API collection DirectX 12; the future Pascal generation (expected
to be released in ~ 2016) will feature unified virtual memory (allowing the sys-
tem memory and GPU memory to be addressed in a single space) and 3-D stacked
memory (permitting more memory per unit of volume), substantially increasing the
memory size, bandwidth and the ease of programmability (Purches 2013).

Nvidia’s CUDA GPU adopts a hierarchical design in terms of the programming

abstraction, processing hardware and memory hardware (Hennessy & Patterson

11

2012, pp. 288-315), explained as follows.

e Programming abstraction A CUDA code has two components: the host code
that is essentially the same with the conventional CPU code and executes in
sequence on the CPU, and the device code that executes in parallel on the
GPU. The device code consists of one or more kernels, which simply refers to
the user-developed GPU-specific functions. A kernel is executed by a large
number of parallel GPU threads (Nvidia. 2011). A certain number of threads
form a higher level of unit called block, and a certain number of blocks form
the highest level of unit called grid. The thread, block and grid constitute
CUDA'’s programming hierarchy from the bottom to the top. Users can spec-
ify the number of threads per block and the number of blocks per grid launched
on the GPU. Besides, there is an additional concept called warps. A warp is a
bundle of 32 threads, and is an implementation of Nvidia’s Single-Instruction,
Multiple-Thread (SIMT) model wherein the 32 threads always execute a com-
mon instruction (Nvidia. 2013b).

e Processing hardware A CUDA GPU has a large number of basic processing
units called Streaming Processor (SP), also known as CUDA core. A num-
ber of SPs along with additional hardware accessories form a higher level of
unit called Streaming Multiprocessor (SM). A number of SMs with additional
accessories form the entire GPU (Nvidia. 2011). There is a close relation
between the processing hardware and the programming abstraction (Seibert.
2011). When a kernel is launched, a GPU global thread scheduler automati-
cally distributes the blocks to the available SMs for execution (Nvidia. 2011).
A block can reside in only one SM, and an SM can hold one or more blocks if
hardware resource permits. On each SM, a local warp scheduler automatically
organizes the execution of warps within the resident blocks. The instructions
from a warp are issued to a group of SPs on the SM. Different warps from the
same or different blocks may be interleaved and executed concurrently. It is
worth pointing out that on a CPU, one can explicitly attach threads or pro-

cesses to cores, but on a GPU, the mapping between blocks or warps to SMs

12

is entirely automated by the hardware itself and currently does not permit

users’ intervention.

o Memory hardware A CUDA GPU has on-chip memory located on each SM,
and off-chip memory outside of them (Nvidia. 2013b). From a programming
perspective, these memories can be divided into several categories correspond-
ing to the hierarchical programming abstraction. A thread has an exclusive
space on the on-chip memory called register to store local variables, and also
a space on the off-chip memory called local memory to store excess variables
that the register cannot hold. A block has an exclusive space on the on-chip
memory called shared memory shared between threads within that block. A
grid has a global memory and constant memory space on the off-chip memory,
both shared among all the threads across the whole grid. Table 1.1 summarizes
the property of these memories.

Table 1.1: Memory of Kepler GPU. The table is a modification to the
one from Nvidia. (2013a). The scope refers to the level of

programming abstraction that can access the memory. The
lifetime refers to the duration of that accessibility.

memory register local shared global constant
managed by compiler compiler programmer programmer programimer
location on-chip off-chip on-chip off-chip off-chip
cached no yes no yes yes
read and read and read and read and
access read only
write write write write
all threads all threads all threads
scope
P per thread = per thread per block per grid per grid
eiihine o] Hiizes] ikl host allo-host allo-
cation cation

Apart from CUDA, the Nvidia GPU also supports several other types of pro-

gramming models, summarized in Table 1.2.

13

Table 1.2: Programming models supported by the GPU and coprocessor.
The coprocessor allows more programming models.

hardware accelerator programming model supported

GPU CUDA, OpenCL, OpenACC, OpenMP
MPI-OpenMP, MPI-Pthreads, Cilk,
TBB, offload pragma, OpenACC, OpenMP

coprocessor

1.4.3 Coprocessor Architecture and Programming Model

In 2008, Intel introduced their own graphics pipeline architecture codenamed
“Larrabee”. It bundled many in-order CPU cores running an extended version
of the x86 instruction set (Seiler et al. 2008). In 2010, based on the Larrabee
processor, Intel started to develop their new, many-core coprocessor codenamed
“Many Integrated Core” (MIC) for general-purpose computing (Intel. 2010). The
initial prototype was named “Knights Ferry,” with 45 nm process, 32 CPU cores
operating at 1.2 GHz, and 2 GB on-board memory tantamount to GPU’s off-chip
memory (Intel. 2010). In around 2012, several major improvements were made
to the coprocessor, including enhanced semiconductor manufacturing processes (22
nm), more number of CPU cores (more than 50) and larger onboard memory (6 GB)
(Intel. 2012). The new coprocessor was named “Knights Corner,” later rebranded
as “Intel Xeon Phi” and became publicly available. The next generation of Intel’s
many-core product will be named “Knights Landing,” featuring the 14 nm process
and large on-package memory tantamount to GPU’s on-chip memory. The product
will appear either as the standalone CPU or as the hardware accelerator (Wechser
2014).

The coprocessor does not require a programmer to have as much intimate
knowledge on the hardware architecture as the GPU does. In practice, it can be
directly viewed and used as a many-core CPU, 57 ~ 61 cores to be specific (Intel.
2013¢, 2012, 2013d). There are, however, four unique features of the coprocessor
worth noting. First, the coprocessor has large built-in memory ranging from 6 to 16

GB. Second, each core has a 512-bit wide vector processor (Intel. 2013¢). The vec-

14

tor processor adopts the single instruction multiple data (SIMD) execution model.
In each clock cycle, it can perform 16 32-bit integer operations, 16 single-precision
(32-bit) floating point operations, or 8 double-precision (64-bit) floating point op-
erations. There are three major ways to utilize the vector processors on the Intel
Xeon Phi coprocessor. The simplest way is to rely on the automated vectorization
performed by Intel’s compiler. The code should be compiled with high level of opti-
mizations, typically larger than O2. Due to the conservative nature of the compiler,
however, the portion of code that can be vectorized this way is usually very lim-
ited, if not nothing at all. The second way is to apply the compiler directives (e.g.
#pragma ivdep) to a block of code to assist the compiler with vectorization. The
compiler directives can be regarded as a promise made by the developers that “the
marked code does not have data dependency and the compiler should feel safe and
free to vectorize it”. The advanced way of using vector processors is to explicitly
write the code with vectorization syntax, such as using array notations to manip-
ulate multiple data at the same time (Intel. 2013b). Third, 4 “hardware threads”
are supported per core on the coprocessor as opposed to 2 hyperthreads per core
on the conventional CPU. There are both similarities and differences between the
hardware threads and the hyperthreads. On the one hand, in both implementations
threads have their private architectural state such as the registers, while sharing the
execution resource such as the execution engine and the cache (Intel. 2003, 2013e).
On the other hand, the hardware thread on a coprocessor is designed for in-order
execution that typically requires 2 ~ 4 threads per core for optimal performance,
while the hyperthread is for out-of-order execution, whereby it may be beneficial or
detrimental to use more than one threads, usually being case-dependent. Fourth, the
coprocessor cores are linked with each other via a ring interconnect (Intel. 2013e).
The coprocessor supports a wide variety of programming models, summarized
in Table 1.2. Especially, it permits some existing models, such as MPI-OpenMP
and MPI-Pthreads, that have already been widely adopted in CPU-based systems.

This advantage significantly reduces the effort of code porting.

15

1.5 Literature Review

Several groups have already applied the GPUs to MC-based photon and elec-
tron transport simulations. Badal & Badano (2009, 2011) developed the MC-GPU
code for X-ray radiography simulation and radiography dose calculations, and re-
ported a speedup of 110 over the CPU-based MC code, PENELOPE (Baré et al.
1995). Jia et al. (2010, 2011) developed the gDPM code based on the CPU-based
DPM that was originally created by Sempau et al. (2000), and observed a speedup
of 69.1 ~ 87.2 over the CPU code for radiotherapy dose calculations. Hissoiny et al.
(2011) developed the GPUMCD code for coupled electron-photon transport and re-
ported that for electron transport the speedup factors were 210 and 1200 compared
to general-purpose codes DPM and EGSnrc, respectively, while for photon trans-
port the numbers were 20 and 940. From our group, Liu et al. (2012a) developed
the CPU and GPU-based MC codes for CT organ dose calculation. On a single
GPU, the code was found to be 19 times faster than the CPU code and 42 times
faster than MCNPX (Pelowitz 2008). The speedup factors were doubled on a dual-
GPU system. Jahnke et al. (2012) developed the Geant4-based (Carrier et al. 2004)
GMC code and claimed a speedup of 4860 over Geant4 running on one CPU core
for Intensity-Modulated Radiation Therapy (IMRT) MC simulations. Chen et al.
(2012) developed an MC tool for CT dose calculations using multi-slice CT (MSCT),
flat-detector CT (FDCT), and micro-CT scanners, and observed a speedup factor
in the range of 40 ~ 50 using a single GPU compared to a single-core CPU.

Caution should be exercised in understanding and interpreting these impres-
sive speedup factors. Most of the studies only compare the parallel GPU code with
the single-threaded CPU code run on a single CPU core. But the multi-core CPU
architecture has become the mainstream since 2005 (Moore 2010), and Intel CPUs
in particular provide additional parallelism through the hyperthreading technology
(HTT) (Intel. 2003). Lee et al. (2010) discovered that for a wide variety of algo-
rithms, by applying multithreading and other appropriate optimization techniques,
the performance gap between an Nvidia GTX 280 GPU and an Intel Core i7-960
CPU could be reduced, on the average, to 2.5x only. Thus for a fair comparison

of different hardware platforms, it is necessary to parallelize and optimize the code

16

on each platform to make the most of all the hardware resource available (Liu et al.

2014a).

1.6 Objectives

This doctoral research aims to fill the gap created by the rapid development
of hardware accelerators in the high performance computing industry and their in-
compatibility with the existing Monte Carlo particle transport codes. Four primary

undertakings as follows are carried out.

1. To develop a new generation of Monte Carlo photon transport code on the
heterogeneous computing system. The code shall have three variants designed
and fine-tuned for three different parallel platforms on the system: the tra-
ditional multi-core central processing units (CPU), the new Nvidia graphics
processing units (GPU) and the new Intel Xeon Phi coprocessors. The code
shall incorporate a validated CT scanner model and have the capability to
handle anthropomorphic phantoms to enable Monte Carlo simulations in CT

dose calculations.

2. To verify the developed code against the production code Monte Carlo N-
Particle eXtended (MCNPX) in a series of dosimetric benchmark tests. To

validate the simulation models against the experimental measurements.

3. To evaluate the computing efficiency, energy efficiency, cost effectiveness, scal-
ability of the developed code, and explore the level of concurrency achievable

on the heterogeneous computing system.

4. To apply the developed code to clinical CT dosimetry.

CHAPTER 2
MATERIALS AND METHODS

“Cis quirky, flawed, and an enormous success.”
—Ritchie, Dennis

This chapter expounds the development process of the photon transport mod-
ule of our Monte Carlo code named Accelerated Radiation-transport Computations
in Heterogeneous EnviRonments (ARCHER) (Xu et al. 2013). This photon trans-
port module is specifically designed for the CT dosimetry application. Another com-
ponent of ARCHER is the electron transport module for the radiotherapy dosimetry
application and is detailed in the publication by Su et al. (2014). There are a total
of 9 sections in this chapter. Section 2.1 provides a panoramic view of heteroge-
neous computing, and pinpoints the specific parallel paradigm we are adopting in
ARCHER design. Section 2.2 describes the hardware specifications of our heteroge-
neous computing system. Section 2.3 explains how the photon transport process is
simulated using Monte Carlo methods. Section 2.4 explains how the radiation dose
from the CT scan is estimated in ARCHER. Section 2.5 showcases the modelling of
CT scanner and patients. Section 2.6 elaborates on the approaches to develop and
optimize different variants of ARCHER to specific hardware platforms. Section 2.7
shows the verification and validation tests used to examine the functionality and

suitability of ARCHER in CT dose calculations. Section 2.8 describes the method

Portions of this chapter previously appeared as: Liu, T., Ji, W. & Xu, X. G. (2013), Devel-
opment of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi
architecture, in ‘International Conference on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013)’, Sun Valley, ID, pp. 1199-1210.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).

17

18

to evaluate the performance of ARCHER, including the computing and energy ef-
ficiency. Finally, section 2.9 shows our preliminary effort to apply ARCHER to a

clinical CT scan procedure.

2.1 Overview

Developing a code capable of utilizing the emerging hardware accelerators —
the GPU and coprocessor — requires the provision of a heterogeneous computing
system, defined as the one that uses more than one kind of processors (AMD. 2012).
The CPU is still an indispensable component, since the hardware accelerators alone
have so far been unable to work independently and need CPU’s coordination. Fig-
ure 2.1 demonstrates a generic model of such heterogeneous system, which is con-
structed in a hierarchical pattern with respect to the hardware architectures as well
as the programming models. For the hardware architectures, the system contains
a number of individual nodes connected with one another. Each node has several
CPUs and hardware accelerators. Every CPU controls a set of hardware accelerators
in that node. For the programming models, on the CPU or coprocessor, there can

be one or more processes, each containing a group of threads. On the GPU, one or

node

CPU

- o

o

coprocessor

process

Figure 2.1: The generic model of a heterogeneous computing system.
Both the hardware architectures and the programming mod-
els are based on the hierarchical design.

19

more grids can reside, each being made of a number of blocks, which can further be

split up into a number of threads.

serial code parallel code (Monte Carlo transport)
[start] [start]
) n
input ct scanner and w
patient models, y
photonic database
sample position, direction |<— score the
tally
sample path-length |<n— y
score the tally
I 1
, launch ph(_)ton transport 1 y photoelectric
1 kernel in parallel ! >
n
| record per batch dose | ,
incoherent?
increment scan batch index I— n
I
ﬁ/ output dose
P T / | increment history index |7

e

Figure 2.2: General flowchart of ARCHER. The meaning of the symbols
are: rounded rectangles — start or end; rectangles with dot-

ted line — indication of the entry point of the parallel code;
regular rectangles — generic processing; parallelograms —
file I/0; diamonds — decision-making.

This research focuses on implementing a special case of such heterogeneous
computing paradigm, whereby a single node is built with a single CPU to con-
trol several hardware accelerators, and a new Monte Carlo photon transport code
is developed to test the efficacy of each computing unit. The code is named
as Accelerated Radiation-transport Computations in Heterogeneous EnviRonments
(ARCHER). Tt is composed of three variants, the CPU code ARCHER cpy, the GPU
code ARCHERGpy, and the coprocessor code ARCHERcop. Conceptually, all the
codes are composed of two logical parts, shown in figure 2.2, the serial code (in light
blue) performing initialization, finalization, file I/O, scheduling, etc, and the parallel
code (in light yellow) performing the compute-intensive Monte Carlo simulations.

The parallel part of ARCHER is ultimately what we aim to accelerate and
compare across different hardware platforms in terms of the computation perfor-

mance, energy efficiency, etc. Thus each code variant is named after their specific

CPU

CPU

serial code

serial code

l

parallel code

!

serial code

serial code

le—]

parallel code

(a) ARCHERcpy (b) ARCHERGpU

CPU

serial code

l

parallel code

!

serial code

(d) Concurrent execution of the

parallel code || I

CPU and GPU

CPU

coprocessor

script

serial code

|

parallel code

|

script

serial code

(c) ARCHERcop

(e) Concurrent execution of the

CPU

| scfpt }\\ coprocessor
I serial code | N serial code

! I

parallel code |

l parallel code
| serial code | l

l P % serial code
| script |"

CPU and coprocessor

20

Figure 2.3: Relationship between the serial and parallel parts of
ARCHER and the hardware platform. (a) ARCHERcpy is
entirely run on the CPU. (b) ARCHERGpy has the parallel
part run on the GPU and the serial part on the CPU. (c)
ARCHER(cop is entirely run on the coprocessor, while the
script to manage data transfer between the host and copro-
cessor executes on the CPU. (d) The CPU and GPU work
concurrently.

rently.

(e) The CPU and coprocessor work concur-

hardware platform where the parallel part is physically executed. It is, however,

necessary to clarify that for the hardware accelerator variants, a certain part of the

code always needs to run on the CPU. The relationship between the code and the

hardware platform is more clearly illustrated in figure 2.3. ARCHERcpy is entirely
run on the CPU. ARCHERgpy has only its parallel part run on the GPU. The en-

tire executable file of ARCHERop is run locally on the coprocessor, but the script

used to upload the input data and the executable file to the coprocessor as well as

download the result back to the host still needs to run on the CPU. Aside from de-

veloping each code variant, another important area we have explored is to increase

21

the system concurrency, i.e. to have multiple computing units running Monte Carlo
simulations at the same time to maximize the overall arithmetic throughput. This
aspect of work, shown in figure 2.3d and figure 2.3e, is done on multiple scales. In
an increasing order, it includes achieving the concurrency of multiple grids on a
single GPU, the concurrency of multiple GPUs, and the concurrency of CPU and

hardware accelerators.

2.2 Hardware Specifications

The heterogeneous computing system used in this research is built upon a
Tyan FT77-B7015 4U Rackmount server (TYAN. 2010). The motherboard has two
Land Grid Array (LGA) 1366 CPU sockets and eight second-generation Peripheral
Component Interconnect Express slots with 16 lanes (PCle 2 x16). The computing
units used include one Intel Xeon X5650 CPU, six Nvidia Tesla M2090 GPUs, one
Nvidia Tesla K20 GPU, one Nvidia Tesla K40 and one Intel Xeon Phi 5110p. The
hardware accelerators are mounted to or dismounted from the PCle slots according
to the actual need in different tests. The specifications of the computing units are
summarized in table 2.1, where the memory refers to the external main memory for

the CPU, and internal onboard memory for the hardware accelerators.

Figure 2.4: A photograph of our heterogeneous computing server.

22

Table 2.1: Computing units of the heterogeneous computing system.

hardware model processor microarchitecture memory
specification specification
CPU ;1;215 0 Xeon 6 cores Westmere 16 GB
Nvidia Tesla 16 SMs, 32 SPs :
z F
M2090 per SM e o L&
Nvidia Tesla 13 SMs, 192
GPU ; Kepl
K20 SPs per SM epler o G
Nvidia Tesla 15 SMs, 192
b Kepl
K40 SPs per SM S 2l (G2
COProcessor Intel ~ Xeon 60 cor Knights Corner 8 GB
P Phi 5110p cores &

2.3 Monte Carlo Methods
2.3.1 Theory

The Monte Carlo photon transport problem is often centered around quanti-
fying the photo-atomic collision density. It can be mathematically described by the
linear time-independent Boltzmann transport equation 2.1 (Brown 2005), where r
is the position vector, v is the velocity vector, ¥(r,v) is the angular collision den-
sity, S(r’,v) is the source term, C(r', v — v) is the collision kernel that changes
the velocity of the particle at a certain position, and T'(r’ — r,v) is the transport

kernel that changes the position at a certain velocity.

\I/(r,v):/dr' [/\I/(r’,v')C'(r',v'—>V)dV'+S(r’,V) T >rv) (20)

An alternative form to the Boltzmann transport equation 2.1 with simpler
notations and clearer physical meaning is given by equation 2.2 and equation 2.3
(Brown 2005). The position vector r and velocity vector v represent the status

of the photon, and can therefore be grouped into p = (r,v); the collision kernel

23

C(r',v' — v) and transport kernel T'(r" — r,v) change the status of the photon
from p’ to p and can therefore be combined into R(p’ — p) = C(r',v — v)T'(x' —
r,v). Equation 2.2 indicates that the collision density ¥(r,v) can be regarded as
a superposition of a series of components having exactly k& photo-atomic collisions

(k=0,1,2,...), while equation 2.3 defines each component.

U(p) =Y _ W(p) (2.2)

[S(x',vo)T(r — rg,vo)dr k=0
Ui(p) = (2.3)
S U 1(pr—1)R(pe—1 = pr)dpr—1 k=1,2, ...

By repeatedly substituting for Wx(p) (k = 0,1,2,...), one finally obtains equa-
tion 2.4 (Brown 2005), which pinpoints the fact that the history of a photon consists
of a sequence of status transitions, and that the transition is Markovian, meaning

that status pj relies only upon p,_; and is irrelevant to prior statuses.

() = / dpoWo(po) R(po — p1) / dp R(py — pa)... / dpe 1 R — pr) (2.4)

This property of photon transport is faithfully simulated by the Monte Carlo
methods using random sampling. The process is as follows. At the beginning the
initial photon status is Wq(po) stochastically determined. Then the next photon
status is determined by sampling from the the distribution of the status transition
represented by R(py — pi1). More concretely, this involves sampling the path-
length, i.e. the distance that the photon travels before collision with an atom,
from the transport kernel to change the position of the photon, and sampling the
interaction type, such as the photoelectric effect, incoherence scattering and coherent
scattering for CT X-rays, from the collision kernel to change the energy and flight
direction. The random-walk process continues by repeatedly sampling from R(p; —
Pr+1), k = 1,2,... and the photon is free to travel throughout the heterogeneous
problem geometry. The history of the photon is terminated once it is absorbed by

24

the photoelectric effect or escapes from the region of interest.

The physical quantities of interest, such as the flux, current and energy depo-
sition, are tallied and accumulated during the history of a single photon and across
many histories. The ensemble estimate obtained yields an expected-value solution
of the transport equation (Brown & Martin 1984), demonstrated by equation 2.5,
where x;; is the contribution of each collision to the tally of a single history, x; is

the contribution of each history to the overall tally, and Z is the expected value.

i=1

(2.5)

Tr =
n n

Due to the statistical nature of the Monte Carlo method, the mean value z
itself is a random variable and is always accompanied by a statistical error. The
mean value along with its error constitutes the Monte Carlo calculation results.
The central limit theorem (X-5 Monte Carlo Team 2003a) dictates that = follows
the normal distribution with a variance given by equation 2.6. It is a common
practice to report the statistical error in the form of relative standard deviation,
defined by equation 2.7, which represents the statistical precision as a fractional

result with respect to the estimated mean (X-5 Monte Carlo Team 2003a).

2.3.2 Radiation Transport Simulation in ARCHER for CT

The Monte Carlo simulation in ARCHER starts at the focal spot of the X-
ray tube. The initial position P = (z,y, z) and flight direction O = (u,v,w) of
the photon are sampled according to the focal spot geometry and the X-ray beam
shape, and the initial energy F is sampled from a given kVp-dependent spectrum.

The photon is continually tracked throughout the geometries — the analytical model

25

of the C'T bowtie filter, the voxelized patient phantom and the surrounding air —
until it is absorbed, leaks the region of interest or falls below the cutoff energy
(1 keV). The path-length s is sampled using the Woodcock delta tracking method
(Woodcock et al. 1965) to reduce the computation cost. For a photon at a certain
energy F. the macroscopic cross-sections of all the cells are calculated and the
maximum value X . (F) is found out. This value is termed fictitious macroscopic
cross-section in the nuclear engineering. The path-length is then sampled from an
exponential distribution using equation 2.8, where ¢ is a pseudo-random number

uniformly distributed between 0 and 1.

_ logg
Ztt,ma:v (E)

For performance consideration, the fictitious macroscopic cross-section is pre-

S =

(2.8)

tabulated instead of being calculated on the fly. Each time the photon is relocated,
a “where am I” subroutine is called to find out which geometry the photon is inside
of and update the value of the local macroscopic cross-section ¥y (E) accordingly.

Zu(E)) is evaluated. If it evaluates to true,

Then the conditional expression & < S M—0

then the photon is considered to have a realistic collision, and the Monte Carlo

4

random walk proceeds. If it is false, then the collision is regarded as “virtual,” and
the path-length is resampled, and the conditional expression reevaluated, until it
becomes true.

Once the realistic collision site is determined, the atom with which the photon
collides is randomly sampled. To improve ARCHER’s performance, we adopt a semi-
deterministic method by regarding the photon interacting with the entire molecule,
and avoiding the calculation of atom-specific, energy-dependent microscopic cross-
sections. Instead, the macroscopic cross-sections for different types of interactions
are pre-tabulated. This photo-molecular interaction model is proven an efficient
alternative to the analogue photo-atomic model.

The interaction type is sampled from three possible events dominant in the CT
application: photoelectric effects, incoherent scattering (i.e. Compton scattering)
and coherent scattering (i.e. Rayleigh scattering) (Attix 2008, pp. 124-160). More

concretely, let X,c, Y., 2y represent the photoelectric effect, incoherent scattering

26

and total linear attenuation coefficients, respectively. The photoelectric effect will
occur if £ < ¥,./Xy; the incoherent scattering will occur if ¥, /%, < & < (X, +
Yine)/24; and the incoherent scattering will occur otherwise.

In the photoelectric effect, the photon is terminated immediately. In ARCHER,
we adopt a special way to simulate the ensuing fluorescence X-ray. If the photon
collides with a certain group of organs that contain “fluorescence-prone” atoms,
then whether the photon collides with those atoms is randomly sampled accord-
ing to the cross-section fraction. For atoms with Z > 31 — which is labelled as
the fluorescence-prone atom — the primary and secondary fluorescence are both
explicitly simulated (Everett & Cashwell 1973). In our phantom only the iodine
(Z = 53) located in the thyroid falls into this category, and it releases primary
fluorescence with energy as high as ~30 keV. For Z < 11, the fluorescence is not
simulated because it is below the cutoff energy (1 keV) (Everett & Cashwell 1973).
For 12 < Z < 30, the primary fluorescence is ignored in the current release of
ARCHER.

The scattering interactions are accurately modelled by accounting for the elec-
tron’s binding effects (Cashwell et al. 1973). Specifically, for incoherent scattering,
the angular distribution of the scattered photons is modified by the incoherent form
factor 1(Z,v) to reduce the scattering cross-section in the forward direction. The
probability density function (PDF) is expressed by equation 2.9, where pu is the
polar angle cosine, Z is the atomic number, F is the energy of the incoming pho-
ton, v is the inverse length (v = wE+/T — p, w is a physical constant), K(FE, u) is
the classic Klein-Nishina differential cross-section, and 0;,.(Z, E) is the incoherent

cross-section.

fine(p) = I(Z,v)K(E, p)/0ine(Z, E) (2.9)

For coherent scattering, the angular distribution is modified by the coherent
form factor C?(Z,v) to reduce the scattering cross-section in the backward direc-

tion, whose PDF is expressed by equation 2.10, where T'(u1) is the classic Thomson

27

differential cross-section and .., (Z, E) is the incoherent cross-section.

feon(1) = CH(Z, V)T (1) [ocon(Z, E) (2.10)

To improve performance, p is obtained by sampling from pre-calculated lookup
tables based on the two PDFs. The tables are three dimensional matrices p; ;,
where ¢ is the material index, j is the energy grid index, and k is the index of the
cumulative density function (CDF) grid for fi,. or fen. The method to generate
and sample from these matrices is similar to the one devised by Jia et al. (2012).

Secondary electrons from the photo-atomic interactions are not simulated, and
electron energy is assumed to be locally deposited. This is a valid assumption be-
cause for the CT application the Continuous Slowing Down Approximation (CSDA)
range of electrons inside the phantom is generally one order of magnitude smaller
than the dimension of a voxel. The capability of electron transport is developed in
another module of the ARCHER for radiation therapy (Su et al. 2013).

The photo-atomic data are derived from MCPLIB04 library (X-5 Monte Carlo
Team 2003a). The pseudo-random numbers in ARCHER are generated using the
Xorshift algorithm (Marsaglia 2003) provided by the CURAND library (Nvidia.
2012). Although this generator is not ideal because it does not pass some of the
statistical tests (Panneton & L’ecuyer 2005), it is fast (Marsaglia 2003, Nvidia. 2012)
and has a good enough quality for Monte Carlo particle transport simulations (Jia

et al. 2012, Liu et al. 2014a).

2.4 Radiation Dose Calculations
2.4.1 Dose Tallies in ARCHER for CT

The dosimetric quantity of interest in our MC calculation is the absorbed dose
D. Under the Transient Charged Particle Equilibrium (TCPE) condition (Attix
2008, pp. 61-80), which is usually satisfied in the human body, it is equal to the col-
lision kerma K.. ARCHER counts D using MCNP’s pre-tabulated heating numbers
that represent the average energy deposition per collision (X-5 Monte Carlo Team
2003a). The count is carried out prior to the determination of a specific interaction

type. The heating numbers include the fluorescence energy for Z < 11 and exclude

28

it otherwise. The analytical expression of D is given by equation 2.11, where m
is the mass of the tallied organ or tissue, E is the photon energy, t is the time, V
is the tallied space, Q) is the solid angle, H is the heating number representing the
average energy deposition per collision, 7 is the spatial vector, ¥; is the total linear
attenuation coefficient, also known as the total macroscopic cross-section, and ¢ is

the angular flux of the photon.

D= %/dE/dt/dV/dQ H(E)Sy(7, E)o(7,Q, E. t) (2.11)

In MC method, this quantity is estimated using equation 2.12, where AD
denotes the dose increment in a single collision event.
H(E
AD = L (2.12)

m

Special treatment was applied to the calculations of dose to the bone surface
and red bone marrow (Schlattl et al. 2007). First, since the bone surface is as thin as
10 um and cannot be directly modelled in voxel phantoms, its dose is approximated
by the dose to the spongiosa (Zhang et al. 2009). Second, the dose to the red bone
marrow Dgpy is derived from the dose response function Rgrpp(E), an energy-

dependent weighting factor, shown in equation 2.13.

Drem = % / dE / dt / dv / AQ Rppa(B)o(7,Q, B, t) (2.13)

In MC method, this quantity is estimated using the collision estimator in

equation 2.14.

(2.14)

In ARCHER, the above method for dose tallies is implemented in three forms,

listed as follows.

e (Organ dose tally This type of tallies applies to the case where the computa-
tional phantoms have well-segmented organs, including all the voxelized phan-

toms described in section 2.5.2. An organ in such phantoms may contain one

29

or more cubic voxels that have exactly the same density and elemental com-

position. The dose and statistical error are calculated for the entire organ.

e Point dose tally This type of tallies applies to the case where the phantoms are
converted directly from the DICOM image described in section 2.5.3 and do
not have well-segmented organs. The dose and statistical error are calculated
for a user-specified region — a box that contains one or more cubic voxels that

may have different density and elemental composition.

e Dose distribution tally This type of tallies applies to both type of phantoms
mentioned above. It calculates the dose and statistical error to each individual
voxel, and the result is a 3-D matrix having the same dimension with the

phantom itself.

In both the organ and point dose tallies, each thread on the CPU, GPU or
coprocessor holds one full list of local dose counters. There are two different methods
to collect the result from all the threads. One is the atomic summation. Once a
photon on a thread is terminated, the list of local dose counters are added to a single
list of global counters. Here the addition operation is made “atomic” in order to
avoid race conditions, where multiple threads compete in performing the read-and-
modify operation on the same memory location simultaneously. Atomic summation
serializes the participating threads and guarantees all the values carried by them
are correctly added together. This method was previously used by Jia et al. (2010),
Chen et al. (2012) in the CT dose calculations. The other method is the parallel
summation. Upon finishing a photon, each thread adds the local dose counters to a
thread-private list of global counters. In other words, the number of lists of global
counters is not one, but the same with the number of threads. After all the threads
complete their computation, an elaborately designed reduction algorithm developed
by Nvidia (Harris 2011) is used to efficiently sum up the data in the long list of
global counters. The atomic summation has the advantage of smaller of memory
usage. None the less, it is offset by the disadvantage that the accuracy of floating
point calculation may be negatively affected, which is demonstrated in figure 3.1 of

section 3.1.1. Hence in ARCHER, the parallel summation method is always used

30

for the organ and point dose tallies (Liu et al. 2013, Liu et al. 2014a).

For the dose distribution tally, due to the limitation of memory space, it is
usually not practical to have each thread hold the local dose counters of a large size.
Thus the atomic summation method is used as the last resort. The batch statistics
(Romano & Forget 2013) method is adopted in ARCHER to correctly evaluate the

statistical error without using local dose counters.

2.4.2 Conversion of Simulated Dose to Absolute Dose

The direct output of ARCHER, similar to MCNPX (X-5 Monte Carlo Team
2003a), is normalized to be per starting particle and has an unit of MeV per gram
per source particle. In order to have a real dosimetric meaning, the total number
of particles N resulting from a certain CT scan needs to be known to convert the
result into MeV/g and finally into the conventional form mGy. N can be expressed
by equation 2.15, where I(t) is the intensity of tube current, ¢ is the time, T is
the total duration the X-ray tube is turned on, A denotes the number of photons

emitted from the X-ray tube per unit of electric charge.

N = A/Tf(t)dt (2.15)

Strictly, A is only a function of kVp and tube internal geometry and is inde-
pendent of other external parameters such as the geometries of collimator, bowtie
filter, phantom and the movement of the scanner.

While I(t) and t are both predetermined and can be obtained from the DICOM
files, the conversion factor A needs to be experimentally derived. This work was ini-
tially performed by Gu (2010) and later modified by Ding (2012). Their experiments
were performed using the standard CT DIy, setup, in which an air-equivalent ion
chamber was placed at the isocenter without the presence of any phantom, and an
axial scan with 100 mAs was performed. The conversion factor is thus obtained by
equation 2.16, where D, is the measured absolute dose and D,;,, is the simulated

dose.

D aps [mGy/100mAs]
Dygim [MeV/g/source particle]

Atoo = (2.16)

31

Compared with A, the coefficient A;qy is more convenient in practice in that it
is normalized to a better base — per 100 mAs, and also it inherently accounts for
the conversion from MeV/g to mGy.

In general, given a total of P discrete scanner projections, the tube current I;
in mA at the ith projection, the duration At in sec of the X-ray tube on when the
scanner moves from the ith projection to the ¢ + 1th, and the MC simulated dose
Dy at the ith projection normalized by the number of histories NV; emitted from

that projection, the absolute dose can be estimated by equation 2.17.

L;At Aool; At
Daps = Z Dapsi = Z (AmoDm,i o0) = a5 Z Dy (2.17)

For tube current modulation, equation 2.17 can be directly applied to calculate
the overall absolute dose. Usually the component Dy, ; is found useful in studying
the angular dependency of the dose. For fixed tube current, the total duration
of the X-ray tube on T is often explicitly known, and equation 2.17 reduces to
equation 2.18. It should be noted that in this study the CT scanner was modeled in
a special way (Gu 2010) in that the sampling of initial source direction (mentioned
in 2.5.1) takes the beam collimation into account. This indicates that the collimator
is now considered part of the X-ray tube geometry, and thus A\ is also a function

of beam collimation beyond kVp and tube internal geometry alone.

AlOOIiT
Dy = E Dygini 2.1
abs 100P ' sim,i (8)

7

2.5 CT Scanner and Patient Modeling
2.5.1 MDCT Scanner Model

ARCHER incorporates a GE LightSpeed 16 Pro multi-detector CT scanner
model. It was reviously developed and validated by Gu (2010) and Ding (2012)
using MCNPX code. It is composed of two objects: the source and the bowtie filter.
The geometry of the source is illustrated in figure 2.5. An isotropic X-ray point

source is placed at the center of a hypothetical sphere S which intersects with a

32

hypothetical box C' called cookie-cutter. The name originates from MCNPX (X-5
Monte Carlo Team 2003b) where a cookie-cutter cell is used to define geometrically
complicated source distribution. The intersection of S and C' is a curved surface
H which determines the shape of the X-ray beam: if the initial direction vector of
the source particle is sampled such that its intersection with S is outside of H, it is
rejected and re-sampled; otherwise it is accepted and the MC random walk process

continues.

cookie-cutter box C

sphere S

curved surface H

point source P

Figure 2.5: Top view (left) and perspective view (right) of the X-ray
source model (Gu 2010, Ding 2012).

The area of H is significantly smaller than that of S. Thus, the isotropic
source model originally defined in MCNPX code results in high rejection rate and
unnecessarily long computation time. To alleviate this problem, the source model
in ARCHER is modified such that its initial direction is artificially biased toward
H. Specifically, in figure 2.5, the vertex of H pointed to by the annotation arrow
is the location where the polar angle consine p (cosine of the angle 6 from z axis
to the direction vector) and the azimuthal angle ¢ (the angle from x axis to the
projection of the direction vector onto x-y plane) achieve their maxima po and
¢o. To effectively reduce the rejection rate, we regulate that u € [—po, o] and
¢ € [—o, po]. It should be noted that for u and ¢ that are sampled independently
following this regulation, the resultant beam area will be slightly larger than H.

This is illustrated in figure 2.6. Therefore, to create the intended beam shape, a

33

rejection sampling process is still needed to filter out the particles whose initial
directions point to the green area, but fortunately the rejection rate is considerably

lower than the previous isotropic case.

curve U2 curve U1

Figure 2.6: Close-up of the X-ray source model. When ; and ¢ are sam-
pled independently, the beam area having U, as the bound-
ary is larger than the intersection H of the source sphere and
cookie-cutter box having U; as the boundary. The difference
colored in green is very small, indicating a low rejection rate.

The initial attributes of the particle includes its direction, position and energy.
The direction is sampled as stated above. The position is the intersection of H with
the direction vector. The energy is sampled from X-ray spectra generated from
Xcompbr, a DOS program developed by Nowotny & Héfer (1985). The anode angle
and aluminum flat filter are both taken into account in this utility.

The bowtie filter model is represented by the shaded region in figure 2.7. It is
constructed from a box B, two elliptic cylinders E; and Es, and a plane P through
boolean operations. It is critical to properly determine the geometric parameters
of these objects, as they are directly related to the X-ray beam quality. Because
the manufacturer-provided data were unavailable, Gu (2010) adopted an iterative
trial-and-error approach to approximate and fine-tune the parameters until the sim-
ulation was eventually in agreement with the experiment with 6% tolerance, using
the Computed Tomography Dose Index (CTDI) phantom. Gu (2010) modeled two
types of bowtie filters for different scan protocols, a head and a body bowtie filter,

34

which only differ in the geometric parameters.

elliptic cylinder E1

%«— box B

——<a—plane P

elliptic cylinder E2

Figure 2.7: Bowtie filer model represented by the shaded region.

The combination of source and bowtile filter models constitutes the MDCT
scanner model. In reality, the CT scanner continuously emits X-ray photons when
rotating around the patient. In the MC simulation, this process is discretized into a
sequence of scanner projections: we assume that the scanner moving from position
P; at time ¢; to position P, at time ¢;,; delivers the radiation dose that is equivalent
to the scanner staying at P; from ¢; to ¢;;;. The number of projections per rotation
is set to 16 as an appropriate approximation suggested by Gu et al. (2009). Two
types of scanner movement — axial and helical scans — are modeled. The sign of
the incremental angle between adjacent scanner projections is user-specified, and it
determines the direction of circular motion (clockwise or counter-clockwise).

With the above scanner model incorporated, ARCHER provides fully cus-
tomizable scan protocols. Users have the freedom to specify the parameters as

follows:

e Pitch The pitch is defined as the ratio of the table feed per rotation to the

beam collimation.
e Scan mode The scan mode encompasses axial or helical scan.

e Scan region The region that undergoes CT scan is determined through a pair
of parameters: the total number of scanner projections, and the incremental

distance along the axis of rotation between adjacent projections. The lat-

35

ter parameter relates to the pitch as such: pitch = incremental distance x

16/beam collimation

o kVp kVp refers to the tube voltage information given in the form of X-ray
spectrum. Four pre-tabulated spectra are available: 80, 100, 120 or 140 kVp.

e Bouwtie filter type Head or body bowtie filters.

e Beam collimation The beam collimation is defined as the width of the collima-
tion over the area of active X-ray detection. Four kinds of beam collimation

is available to choose from: 1.25, 5, 10, or 20 mm.

Besides, it is noted that the approach by the former researchers in our group to
simulate the scanner movement in MCNPX varies from case to case. This complexity

has been accounted for in ARCHER by providing three simulation options:

e Per-projection simulation The total number of particles is evenly distributed
among all the projections, which are treated in sequence: particles emitted
from the ith projection are simulated; the radiation doses are calculated and
output; then particles from the 7+ 1th projection are handled. This option was
selected in case of tube current modulation, where the simulated per-projection
dose is modified by a projection-specific, angular-dependent coefficient to es-

timate the realistic dose.

e Per-rotation simulation The total number of particles is evenly distributed
among all the rotations, which are treated in sequence: particles emitted from
the ith rotation are simulated; the radiation doses are calculated and output;
then particles from the i + 1th rotation are handled. Within each rotation,
which projection the particle is emitted from is randomly sampled. This option
was selected when a hypothetical whole-body axial scan with pitch of 1 was
performed in order to establish a dosimetric database for the VirtualDose

software (Ding 2012).

e Random-selection simulation The projection from which the particle is emitted

is randomly sampled from all probable projections along the scanner trajec-

36

tory. This option was selected to simulate a clinical helical scan(Ding et al.

2010).

2.5.2 Anthropomorphic Phantoms
ARCHER incorporates a library of voxelized whole-body phantoms with de-

tailed anatomical information. These phantoms were developed in our previous
research, including VIP-Man (Xu et al. 2000), RANDO (Wang et al. 2004), RPI-
Pregnant women with 3, 6 and 9 months of gestation (Xu et al. 2007), ten extended
RPI-Adult females and males representing patients of different Body Mass Indices
(BMI), from normal to overweight and to morbidly obese (Zhang et al. 2009, Na
et al. 2010, Ding et al. 2012b, Liu et al. 2014a).

2.5.3 Patient-Specific Phantoms

In a clinical situation, the existing computational phantoms cannot be directly
used in MC simulation, due to the fact that their anthropometric and anatomical
parameters can significantly differ from those of the real patients. It is necessary
to devise a strategy that capitalizes on the clinically obtained information, such as
body weight, height or Body Mass Index (BMI), DICOM files, and effectively gen-
erates patient-specific phantoms. One proposed approach is to develop in advance
a series of voxelized phantoms with incrementally changed parameters and seek the
one that best suits the patient. This requires the developed series be sufficiently
exhaustive to cover as wide body variations as possible. Examples of such series
include RPI deformable phantoms (Na et al. 2010, Ding et al. 2012b) and UF adult
and pediatric phantoms (Johnson et al. 2009). However, an exact match may rarely
happen, whereby the MC simulation using the approximate phantom almost always
starts with some existing systematic error. The second possible approach is a variant
of the first one. The aforementioned “voxelized” phantoms are in fact derived from
their “boundary representation” parent phantoms consisting of a massive amount of
control points. The control points provide great flexibility for free geometry alter-
ation not permitted in the voxelized phantoms. Given the patient’s anthropometric
parameters, a good match can be computationally obtained by interpolating be-

tween existing boundary representation phantoms (Liu et al. 2011). However, the

37

voxelization process that follows, which translates the matching phantom into its
voxelized counterpart is very time-consuming — typically 2 days — thwarting the
attempt for fast dose calculation.

The third approach adopted in this study has a marked advantage over the
former two with respect to the computation speed and matching accuracy. It directly
extracts information from the DICOM files, based on which to build up a patient-
specific phantom. It is composed of two steps described below.

First, the pixel images and scan protocol information are obtained from the DI-
COM files. DICOM stands for Digital Imaging and Communications in Medicine. It
is a generic, comprehensive standard for storing, handling and transmitting images
from a wide variety of medical modalities including CT, computed radiography,
magnetic resonance, ultrasound, radio fluoroscopy, etc. A DICOM file is an en-
coded binary file composed of a sequence of data elements following a common data
structure defined by the DICOM specifications (NEMA 1996) and briefly shown in
figure 2.8. The first component of the data structure is the “tag” that uniquely
identifies the data element. The tag comprises a group tag and an element tag,
both being presented as hexadecimal numbers. The second component is the “value
representation (VR)” that specifies the data type of the subsequent “value field”.
For instance, in figure 2.8 “IS” dictates that the data is stored as a string of char-
acters representing an integer in based-10; while “OW” dictates that the data is
a string of consecutive 16-bit words. The third component is the “value length”
that specifies the size of the subsequent “value field” in byte. The last component
“value field” contains the actual data associated with the CT scan. The value field
of (0018,1151) indicates that the applied X-Ray tube current is 425 mA, while the
value field of (7TFE0,0010) contains the entire pixel data of the cross-sectional image.
In ARCHER, a DICOM decoding module was developed to carry out this particular
step.

Second, the CT numbers from the pixel images are transformed into element
weight and mass density data essential for MC simulation (Schneider et al. 2000).
Specifically, the CT numbers are first linearly converted to Hounsfield Units (HU)
according to the rescale slope and intercept values provided by DICOM. Then the

38

ta value value value field
9 representation length
(0018,1151) IS 4 425
(7fe0,0010) ow 524288 A

ey

Figure 2.8: DICOM data structure. This example shows two data ele-
ments, each consisting of a tag, value representation, value
length and value field. The value field of (0018,1151) spec-
ifies the intensity of X-Ray tube current, while that of
(7FE0,0010) specifies the pixel data array.

material type can be determined from a lookup table (table 2.2) where the scale
of HU is subdivided into 24 bins and each corresponds to a unique material with

elemental weights already pre-defined.

Table 2.2: Conversion of Hounsfield Unit into material type for Monte
Carlo simulation. Each material has a pre-defined list of ele-
mental weights (Schneider et al. 2000).

Hounsfield Units (HU) material

HU < —950 air

—950 < HU < —120 lung

—120 < HU < -83 soft tissues type 1
—83 < HU < —53 soft tissues type 2
—53 < HU < -23 soft tissues type 3
-23< HU L7 soft tissues type 4

7T<HU <18 soft tissues type 5

39

Table 2.2: Continued.

Hounsfield Units (HU) material

18 < HU < 80 mean values of all tissues
80 < HU < 120 connective tissue

120 < HU < 200 skeletal tissues type 1
200 < HU < 300 skeletal tissues type 2
300 < HU < 400 skeletal tissues type 3
400 < HU < 500 skeletal tissues type 4
500 < HU < 600 skeletal tissues type 5
600 < HU < 700 skeletal tissues type 6
700 < HU < 800 skeletal tissues type 7
800 < HU < 900 skeletal tissues type 8
900 < HU < 1000 skeletal tissues type 9
1000 < HU < 1100 skeletal tissues type 10
1100 < HU < 1200 skeletal tissues type 11
1200 < HU < 1300 skeletal tissues type 12
1300 < HU < 1400 skeletal tissues type 13
1400 < HU < 1500 skeletal tissues type 14
HU > 1500 skeletal tissues type 15

The mass density can be determined likewise (table 2.3) with a different di-
vision of HU scale, and within each bin the density is presented as a continuous
function.

The above method is efficient in constructing a phantom that matches the
patient’s geometry within the scan region. However, two factors may affect the
accuracy of the dosimetric result. First, the geometry outside of the scan region
cannot be derived due to lack of data, and therefore the scattering dose may not be
accurately calculated, resulting in a systematic error. Ideally, this can be solved by
gluing parts of the existing voxelized phantom to the top and bottom of the new one

to generate a whole-body patient-specific phantom. Accurate spatial registration

40

Table 2.3: Conversion of Hounsfield Unit into mass density for Monte
Carlo simulation. The mass density is a piecewise function
of HU and it is continuous within each bin (Schneider et al.

2000).
Hounsfield Units (HU) density
HU < —1024 p = 0.001293
—1024 < HU < —98 p = 0.001003 x HU + 1.028
-9 <HU L 14 p =0.000893 x HU + 1.018
14 < HU < 23 p=1.03
23 < HU <100 p = 0.001169 x HU + 1.003
100 < HU < 1525 p =0.000592 x HU + 1.017
HU < 1525 p =192

will emerge as a new challenge. Second, Schneider et al. (2000)’s conversion method
itself does not produce perfectly accurate result, as large errors to the carbon and
oxygen weights were observed in their study. The work to improve the accuracy

based on these two known factors is beyond the scope of this research.

2.6 Software Development
2.6.1 General Flowchart of ARCHER for CT

The general flowchart of ARCHER running on this system is illustrated in
figure 2.2. For ARCHERGpy, the host first imports the patient and CT scanner
models as well as the photo-atomic interaction database to the host’s main memory,
then copies them to the device memory. According to the pre-specified CT scan
range, the computation task is divided into a sequence of independent batches.
Every batch simulates one scanner rotation where a pre-set number of X-ray photons
are tracked in parallel by many threads. Each thread possesses its local counters
to register doses from a number of photons assigned to that thread. The per-batch
organ doses, represented by D, = Zyzk where y; ;, is the dose contribution from

the ith particle for the kth batch, are then derived from all the per-thread results

41

by a global reduction operation and copied to the host for temporary storage. The
global reduction is realized by a highly optimized algorithm developed by Nvidia
(Harris 2011). To calculate the associated statistical uncertainties, another per-
batch quantities — the dose squares T}, = Z(yf) — are counted and summed up
in the same manner with Dj. After all the Zbatches are simulated, the total organ
doses and the associated statistical uncertainties are calculated on the host. For K

batches and n particles per batch, the total relative standard deviation is calculated

by equation 2.19.

> T
% B 1
(; Dy)? Kn

For ARCHERcpy and ARCHERcop, the entire procedure mentioned above
is performed exclusively on the CPU and coprocessor, respectively. The global
reduction is performed by the built-in reduction functions provided by the MPI and
OpenMP programming models.

2.6.2 Development of ARCHERcpy for CT

The parallel CPU code is written in C using the MPI/OpenMP model. The
hyperthreading option of the CPU hardware is enabled. This setup ensures that all
the hardware resource is fully utilized to achieve the best performance. Compared
with the serial CPU code, the parallel one using 6 threads with hyperthreading
disabled is found to be 5.98 times faster, while the one using 12 threads with hy-
perthreading enabled is 8.78 times faster. In the former case the good scalability
on the processor level is attributed to multiple threads running simultaneously on
different cores, while in the latter case the additional speedup per core arises from
the fact that two threads still share the same hardware execution resource but the

memory access latency is efficiently hidden through thread switching.

2.6.3 Development of ARCHERgpy for CT
The GPU code was written in C using Nvidia’s CUDA paradigm. To improve

the performance, three issues were carefully considered: the memory usage, execu-

42

tion configuration and concurrency. The GPU provides several types of memory
with different features for data storage. The constant memory is cached, fast but
very small. It was therefore used to store a group of physical constants such as
the Avogadro constant and elementary electric charge. A fraction of the constant
memory was also automatically used by the compiler to store the parameters passed
to the GPU kernel. The global memory is slow but large. In addition, it is cached
since the advent of Fermi-generation GPU. It was therefore used to hold the large
cross-section tables, the phantom and the dose tally data. The texture memory
is a special type of global memory. It has a dedicated texture cache and provides
hardware filtering that performs linear interpolation in the process of texture fetch-
ing (i.e. when the texture memory is read). It was used to store and interpolate
the scattering angle tables mentioned in section 2.3. Specifically, the tables were
bound to a special form of texture memory called the “layered texture”. Fach layer
contained a 2-D table for a certain material, where each row of that table contained
a series of the scatter angle cosine s at a certain energy. To sample p, first the
material index ¢ (the texture layer index) and the energy indices j, 7 + 1 (the in-
dices of two adjacent rows of us) were determined. Then the indices of two adjacent
columns of us k, k 4+ 1 were sampled to determine which four us to be used for the
bilinear interpolation, which was finally performed by the texture hardware. The
shared memory is fast but very small. It was thus only used in the global reduction
process to pre-load the dose data from the global memory (Harris 2011). Another
type of memory used was the per-SM L1 cache, which was effectively optimized in
two ways. First, its size was set through CUDA API to the largest value, 48 KB per
SM. Second, its behavior was changed through the compiler option to benefit the
global memory access. On the Kepler GPU, it is by default only reserved for the
access of local memory, a compiler managed memory to store per-thread data that
are too large to fit the registers. The performance of some of the GPUs such as K40
can be improved by forcing it to cache both the local and global memory load —
which is in fact the default behavior of the Fermi GPU — using the compiler option
“Xptxas -dlem=ca” (Nvidia. 2013d).

The execution configuration encompasses the specification of proper numbers

43

of threads per block T and blocks per grid B, as well as the proper setup of the
GPU hardware. In ARCHERgpy, each thread is assigned a maximum of m photons
to be simulated one by one in sequence. The lower limit of m is achieved when
the number of threads is maximized such that the total size of dose counters are
equal to the GPU memory capacity; the upper limit is achieved when the number
of threads is minimized such that the GPU achieved occupancy is still sufficiently
large, i.e. all the SMs are still busy. For instance, for the simulation of a batch of
107 photons and 44 dose tallies on the K40 GPU with 12 GB memory (11.519 GB
effective memory for users after ECC is enabled), if each thread only simulates 1

photon, the total memory usage will be:

44 x 2 x 4 x 107

1024 x 1024 x 1024 ~ >3 GB

Here “2” refers to the fact that two copies of dose counters are needed: one to
count the per-particle dose, the other is to accumulate this per-particle count, and
“4” means four bytes due to single-precision floating point. The result is smaller
than the amount of effective memory, hence m,,;, = 1. Furthermore, the minimum

number of threads that narrowly saturates the GPU is:

64 x 32 x 15 x 44% = 13516.8

Here “64” is the maximum number of warps per SM, “32” is the number
of threads per warp, “15” is the number of SMs per GPU, and “44%” is the GPU
occupancy evaluated by the CUDA occupancy spreadsheet (Nvidia. 2013¢) and con-
firmed by the profiler (Nvidia. 2013g). Therefore m,,q, = 107/13516.8 &~ 739. We set
m = 100 in our simulations as an appropriate choice. The total number of threads
t was then n/m, where n is the total number of histories per batch. The number
of blocks per grid T" was derived from the occupancy spreadsheet (Nvidia. 2013¢).
The GPU code was compiled with “-Xptxas -v” to obtain the register usage per
thread, with which to query the spreadsheet for a proper value of B that maximized
the GPU occupancy (the value was 30% ~ 40%). In our case T" = 64 or 128 was
optimal on both the Fermi and Kepler GPUs. It follows that the number of blocks

44

per grid B was t/T. The GPU hardware was configured through the management
tool “nvidia-smi” (Nvidia. 2013f). The “persistent mode” was turned on to greatly
reduce the time spent on loading the GPU driver. Moreover, a function called GPU
boost (Nvidia. 2013d) specific to the K40 GPU was enabled, which increases the
clock frequency while keeping the power draw below the upper limit.

The third consideration is the concurrency, referring generally to the ability of
a system to perform multiple operations simultaneously (Rennich 2011). Three types
of concurrency were investigated: the single GPU stream concurrency, the multiple
GPU concurrency and the CPU-GPU concurrency. One a single GPU, because of
the random nature of MC simulations, different blocks tend to take different time to
complete their jobs. When the simulation is nearing its end, the resident blocks may
not suffice to saturate the hardware, leading to a decrease in the GPU occupancy.
For a simulation consisting of a sequence of batches, the period of low occupancy
can be accumulated to negatively affect the overall GPU performance. This problem
can be effectively solved by using the GPU stream. A stream refers to a sequence of
commands that execute in order; multiple streams may run concurrently (Nvidia.
2013b). We attached different GPU kernels to separate streams, so that when one
kernel on a stream was about to finish and did not fully occupy the hardware re-
source, kernels on other streams could automatically step in and consume the rest
of the resource. The second type of concurrency refers to the simultaneous execu-
tion of multiple GPUs. Because CT dose calculations are embarrassingly parallel,
meaning the threads are executing independently of one another without intensive
communications, the multiple-GPU implementation is expected to bring good scal-
ability. We used one CPU thread to control multiple GPUs, and copied the data
to and from different GPUs through asynchronous memory operations. A unique
seed was assigned to each GPU to generate independent, statistically uncorrelated
random number sequences. For a total of K batches, M GPUs and S streams, each
GPU was given K/M batches that were organized into K/(MS) iterations, and
each iteration involved the concurrent execution of S batches. The third type of
concurrency arises from the heterogeneous computation by the CPU and the GPU.

These two computing units adopt an asynchronous execution mode in the sense that

45

once the GPU kernels are launched the control is immediately returned to the CPU,
and that the CPU remains idle before hitting an explicitly specified synchronization
point. To use the untapped multi-core CPU resource and improve the overall sys-
tem performance, a CPU MC code written in OpenMP was executed right after the
GPU kernel launch. One important issue is to balance the workload between the
CPU and GPU such that they finish the computation at approximately the same
point. Currently a simplistic method was adopted. For a given pair of CPU and
GPU model, a standard MC test — simulation of a whole-body axial scan over the
RPI-Adult Male phantom using 9 x 10% photons — was first performed to derive
the speedup factor 77p, defined as the ratio of the number of particles simulated by
the GPU per second to that by the CPU. Then for K batches, M GPUs and 1
CPU, the simulation was organized into K/(M7p + 1) iterations, where 7p denotes
the rounding of 77p to the nearest integer. In each iteration, the CPU simulated one
batch, while each GPU simulated 75 batches using 75 concurrent streams (Liu et al.

2014a).

2.6.4 Development of ARCHERqop for CT

The coprocessor code was the same with the CPU code, written in C using
the MPI/OpenMP model. The three factors described in section 2.6.3 also apply to
the coprocessor code. The problem pertaining to memory usage is simpler, mainly
because the coprocessor exposes to users a uniform type of memory to store all the
input and output data. To reduce the memory allocation cost, the memory page size
was explicitly tuned up from 4 KB to 2 MB using a dedicated “huge page” library
(Intel. 2013a). With regard to the execution configuration, we let the coprocessor
work in the native execution mode (Intel. 2013¢), whereby the executable file, input
data and MPI/OpenMP libraries were manually uploaded to the coprocessor, and
then the entire code including both the serial and parallel parts was run on it. We
issued a total of 60 processes and pinned them to 60 physical cores correspondingly,
each having 4 threads bound to the 4 logical cores (i.e. hardware thread). Because
the coprocessor did not have the occupancy problem, the task distribution was more

straightforward: the photons in a batch were evenly distributed among the all the

46

60 processes and then among the 4 threads within each process. The concurrency of
the CPU and coprocessor was conveniently obtained by using Intel’s MPI manage-
ment tool (Intel. 2014). The CPU-only and coprocessor-only codes were separately
compiled, then launched simultaneously by the MPI tool that implicitly took care
of the data transfer. The workload was balanced by evenly distributing the photons
in a batch among a bunch of processes, and assigning different numbers of processes
to the host and device. Specifically, the same standard MC test mentioned above
was performed to determine the speedup factor np. Since the coprocessor was given
60 processes, the CPU was assigned 60/7p processes as the appropriate amount of
workload.

It should be emphasized that the Intel Xeon Phi coprocessor is best known
for its distinctive vector feature, i.e. each core has a vector processing unit (VPU)
with 512-bit wide registers for the single instruction multiple data (SIMD) opera-
tions (Intel. 2013¢€). However, the conventional history-based MC algorithm adopted
in ARCHER has many conditional branches and scattered memory accesses, mak-
ing it difficult to directly benefit from that feature. There was very limited room
for vectorization. One was to rely on the compiler-driven automatic vectorization.
The other was the manual vectorization by adding the compiler directives, such as
“#pragma ivdep” to those loop structures that did not have data dependencies.
Both methods only applied to several inner for-loops in the MC transport kernel

and did not lead to appreciable performance improvement (Liu et al. 2014a).

2.6.5 Development Tools

This section describes the software tools used in the development and test of
ARCHER. They fall into four major categories with distinct functions: compiling,
scripting, documenting and version controlling.

Firstly, the compiler is in general used to process the source codes in plain text
and produce the machine codes in the form of object files. It can also act as a linker
by combining all pieces of object files together to generate a working executable file.
The set of compilers with which different variants of ARCHER are developed are
shown in table 2.4.

47

Table 2.4: Compilers used to generate different variants of ARCHER.

platform code compiler
CPU serial, openmp g++
MPI mpicxx
host g++
GPU
device nvee

coprocessor serial, openmp, MPI mpiicpc

g++ is an open-source C++ compiler from the GNU Compiler Collection
(GCC) family developed in the GNU Project (Stallman 2003). For ARCHERcpy,
it compiles the serial and multithreaded CPU code. For ARCHERgpy, it compiles
the host CPU code and links the object files generated from the host and device.
mpicxx is an open-source MPI C++ wrapper coming from the MPI Chameleon 2
(MPICH2) implementation (Gropp 2002). It passes the CPU code of ARCHERcpy
to the back-end compiler to be processed, in our case, g+, and links the resulting
object files to MPI libraries to generate the MPI executable file. nvcc is a proprietary
CUDA compiler developed by Nvidia (Nvidia. 2013e). It compiles the device codes
of ARCHERgpy into the object files with GPU-unique format called fat binary,
which later are linked by g++ to the host object files. mpiicpc is a proprietary MPI
C++ compiler developed by Intel (Intel. 2013b). The way mpiicpc works is very
similar to mpicxx, in that it serves as a front-end by passing the coprocessor code of
ARCHERcop to the internal compiling tool, icpc, and performing linkage to enable
MPT functions.

Secondly, script interpreter imports and executes user’s commands stored in
the script as plain text. Table 2.5 listed all such interpreters used in this research
for a variety of purposes.

The Make (Stallman et al. 2013) utility serves as a fundamental and flexible
platform for source code compilation. On this platform, users explicitly describe the

dependency relationships between the source code, intermediate files (such as the

48

Table 2.5: Script interpreter used for a variety of purposes.

language purpose
Make build ARCHER executable from the source code
organize batch runs in Linux
Bash
organize the profiling of ARCHER
Batch organize batch runs in Windows
prepare photo-atomic data
Python analyze the result of MC simulations and performance
profiling
repare phantom data
Matlab preparep

visualize dosimetric data

object files) and executable file, from which the executable file is elegantly generated.
Besides, on the occasion that changes are applied to some of the source files, Make
is able to identify them and determine which intermediate files needs to be updated,
instead of unnecessarily recompiling all the source files from the very beginning,
thus increasing the compilation efficiency. The Bash (Ramey & Fox 2010) and
Batch (Shammas 1993, pp. 1-20) utilities are chiefly used to organize batch runs,
which is commonly seen when ARCHER is tested under a combination of different
conditions, such as different beam collimations, different kVps, different bowtie filter
types, different phantoms, etc. Such test requires a large number of simulation
jobs that would collectively take a long time to complete. With Bash and Batch,
these jobs can be orderly performed in sequence on one device, or simultaneously
on multiple devices to achieve the job-level parallelism. Bash is also extensively
used to organize the profiling of the GPU and coprocessor codes for performance
analysis. The Python (van Rossum 2014) and Matlab (MathWorks. 1996) utilities
significantly facilitates data processing that occurs prior to or subsequent to MC
simulation, such as input data preparation and output data visualization.

Thirdly, the documentation generator Doxygen (van Heesch 2008) is used to

clearly and conveniently document the source code and create user’s and developer’s

49

guide in HyperText Markup Language (HTML) (Berners-Lee & Connolly 1995)
format.

Fourthly, the version control system Git (Chacon 2009) is adopted to manage
and maintain the source code, which includes reviewing the changes made over time,
reverting the code to a previous state, merging the separately developed modules

with the previous stable release, etc.

2.6.6 Fair Comparison Considerations
To ensure a fair performance comparison across the three ARCHER variants,

the following items have been considered.

e The code is sufficiently parallelized to fully utilize the hardware resource. This
is guaranteed by the parallel programming model and the hyperthread CPU
function for the CPU code, the stream implementation and carefully deter-
mined execution configurations for the GPU code, and the adequate amount

of processes and threads for the coprocessor code.

e Error-Correcting Code (ECC) is enabled on the GPU and coprocessor. Al-
though it reduces the memory size and memory bandwidth, the ECC increases
the hardware reliability when running a large amount of jobs for a long period

of time.
e The same pseudo-random number generators Xorshift are used in all the codes.

e All the codes are highly optimized by applying appropriate compiler options.
For example, all are compiled with a high optimization level of -O3. Another
example is that to improve the performance, some floating operations are
replaced by their faster and less accurate surrogates, realized by the compiler
options (Stallman 2003, Nvidia. 2013e, Intel. 2013b) summarized in table 2.6.
The third example is that all have their unique platform-specific compiler

options turned on, summarized in table 2.7.

20

Table 2.6: Compiler options for fast floating point operations.

code compiler option
ARCHERCPU —-ffast-math
-use_fast_math
ARCHERgpy
-fp-model fast=2, -no-prec-div,
ARCHERcop -no-prec-sqrt, ~-fast-transcendentals

Table 2.7: Platform-unique compiler options.

code compiler option
ARCHERcpy -march=native
-gencode=arch=compute_35,"
ARCHERgpy
code=\"sm_35, compute_35\"
ARCHERcop -ipo

2.7 Verification and Validation
2.7.1 Terminology

Although very commonly used, the terminology of verification and validation is
not standardized, and needs to be clearly specified (Kleijnen 1995). In this research,
we adopt the definition by MCNP6 development team (Pelowitz 20135). According
to this definition (Pelowitz 2013a), verification is a test of the “functionality”. It

)

is “generally performed by code developers,” and it “involves performing a series of
calculations to determine whether a code faithfully solves the equations and physi-
cal models it was designed to solve. “Verification may involve comparison to other
codes, to analytic benchmarks, or to experiments.” In contrast (Pelowitz 2013a),
validation is a test of the “suitability”. It is “generally performed by end users,”

and it “involves a determination of whether the code sufficiently reproduces reality

for a particular range of applications of interest.”. “Validation may involve assess-

o1

ing the verification problems (to ensure that the end-user application is bounded),
comparing calculations to relevant experiments, or performance of scoping studies
(to ensure that parameter changes produce expected changes in results).”

In this research, ARCHER as a special-purpose simulation tool has two com-
ponents. One is the photon transport model developed from scratch according to
the theories of photoatomic interactions and Monte Carlo methods. The correctness
of this component is what we have aimed to guarantee, and can be tested by com-
paring ARCHER with a standard code under exactly the same geometry conditions.
This test, according to the definition, is a form of verification. The other compo-
nent of ARCHER is the achievement from previous studies: the built-in CT scanner
model (Gu et al. 2009, Gu 2010), and the internal algorithm to generate appropriate
computational human phantom from the DICOM images (Schneider et al. 2000).
The correctness of this component is examined by comparing ARCHER’s simula-
tions with experimental measurements. This test showcases how far the simulation
is from the reality, and can be regarded as a form of validation. This classification is
appropriate, considering the way MCNPG6 differentiates between the shielding val-
idation (simulations versus experiments) and shield verification (the new MCNP6

code versus the previously validated and verified MCNP5 code) (Pelowitz 2013a).

2.7.2 Verification of ARCHER for CT with MCNPX
ARCHER is verified against the production code MCNPX version 2.5.0 in

four cases of organ dose calculations. These cases use the same scan protocols,
including whole-body axial scan, 120 kVp, a pitch value of 1:1, but use different
computational human phantoms with different anatomies, including the 73 kg RPI
adult male phantom, 142 kg RPI adult male phantom, 122 kg RPI adult female
phantom and RPI 9-month pregnant female phantom. For each batch (one scanner
rotation) 107 photons are simulated. The number of batches is K = h/b, where h
is the height of the phantom and b is the beam collimation. The total number of
photons of all batches is sufficiently large to reduce the relative standard deviation
to ~0.5% for both ARCHER and MCNP. Information on the phantom geometry is

summarized in table 2.8.

52

Table 2.8: Geometric information of the phantoms used in ARCHER ver-
ification. The number of subregions refers to that of the seg-
mented organs/tissues for a given phantom, i.e. the number

of “universes” used when the phantom was originally defined
in MCNP code.

number

case voxel dimension [mm?®] voxel number of subre-

gions

73 kg RPT adult male a0 g5 035 114 % 93 x 509 1928

phantom
142 kg RPT adult male 55 a5 0 035 135 x 132 x 500 128
phantom
122 kg RPTadult female 50 a5 035 136 x 133 x 460 128
phantom

RPI 9-month pregnant

0.3 x 0.3 x 0.3 187 x 142 x 545 36
female

To make the physics models of the two codes consistent, for MCNPX the
electron transport is turned off and only the photon transport is simulated (Liu

et al. 2014a).

2.7.3 Validation of ARCHER for CT with Experiment

ARCHER is validated with the experimental measurements in point dose cal-
culations. The validation encompasses two cases, a helical scan over a human ca-
daver and the ATOM physical phantom respectively, shown in figure 2.9. The
scanning was performed by a team of experienced medical doctors, radiologists and
physicists at the Massachusetts General Hospital (MGH). In the cadaver study, the
human subject was acquired from a non-profit entity Science Care (Zhang et al.
2014). It was an 88 years old male, 183 cm in height and 67.5 kg in weight, died
from natural causes (Zhang et al. 2014). Six Thimble chamber dosimeters (Model
10x5-0.6CT and 10x6-0.6CT)) were used to measure the absorbed dose in differ-
ent deep and superficial organs. They were 21 mm in length and had 0.6 c¢m?

active volume (Zhang et al. 2014). The cross-calibration showed that under the

23

Figure 2.9: CT scan simulations in cadaver (left) and ATOM physical
phantom (right) study. The helix around the phantom rep-
resents scanner trajectory. This image is generated using the
visualization software Paraview (Paraview. 2014).

same kVp, the response from different dosimeters varied within 5%, and that for
the same dosimeter, the response under different kVps varied within 0.5% (Zhang
et al. 2014). The dosimeters were placed in or next to six organs through surgi-
cal procedures (Zhang et al. 2014). These organs included liver, stomach, colon,
urinary bladder, left kidney, and paravertebral gutter (Zhang et al. 2014). Several
scans were performed over the cadaver using different protocols. Among them, two
realistic clinical scan protocols were later simulated. Their similarities included the
helical abdomen /pelvis scan, 1 second rotation time, a pitch value of 1.375:1, 16 x
1.25 mm beam collimation, body-type bowtie filter, a fixed 300 mAs, whereas their
difference was the respective kVps — 120 and 100 (Zhang et al. 2014). In addi-
tion, a whole-body scan was performed to help construct a complete computational
phantom (Zhang et al. 2014). Without it, the scattering dose coming from outside
of the scan region in the abdomen/pelvis scan would be neglected, leading to an
undesirable dose underestimate.

The direct output data from the experiment are the slice-by-slice reconstructed
CT images in the DICOM format mentioned in section 2.5.3. Medical physicists and

radiologists at MGH developed semi-automatic algorithms to remove the artifacts

o4

from the images caused by the metal component of the dosimeters. They also com-
putationally determined the exact coordinate of the active volume of the dosimeters
from the images.

The DICOM images provided all other scan information that enabled the
Monte Carlo simulations. The whole-body CT image data were directly converted
into a computational phantom using the procedure mentioned in section 2.5.3.
The DICOM tags “trigger on position (0043,1040)” and “duration of X-ray on
(0043,104E)” from the abdomen/pelvis scan data were extracted to determine the
starting location of the X-ray tube in the x-y plane and the entire scan region along
the z direction (including the overscan). The starting location of the X-ray tube in
the z direction was determined by image registration for the whole-body and the
abdomen /pelvis image data. In the Monte Carlo simulation, the absorbed doses to
six 0.49x0.49x0.5 cm? boxes around the dosimeters’ active volume were calculated
as an estimate of the point dose.

The validation using the ATOM phantom adopted a different approach. The
optically stimulated luminescence (OSL) dosimeters were used. The coordinates of
the dosimeters were determined from the cross-section photographs of the physical
phantom that can be assembled slice by slice. The scan protocols included the helical
chest scan, 120 kVp, a pitch value of 0.938:1, 16 x 1.25 mm beam collimation, and
a combination of angular and longitudinal tube current modulation (TCM). An
existing computational phantom was directly used. In the Monte Carlo simulation,
doses to several 1.4x1.4x 1.8 cm? boxes around the dosimeters were calculated. (Gao
et al. 2013)

For both validation tests, the Monte Carlo simulations were performed on
the Nvidia K40c GPU. The raw results with a unit of MeV /g were converted into
mGy/100mAs using the conversion factors obtained in our previous study (Ding

2012) in order to compare with the experimental values (Liu et al. 2014).

5}

2.8 Performance Analysis
2.8.1 Computing Efficiency
2.8.1.1 Performance Comparison of Different Codes

Computing efficiency of different parallel Monte Carlo codes on different hard-
ware platforms is evaluated using a common simulation task — a whole-body axial
scan over the 73 kg RPI adult male phantom under 120 kVp and a pitch value of
1:1. A total of 9 x 10® photons are simulated (90 batches, 107 photons per batch) to
restrict the relative standard deviation to ~0.5% for both ARCHER and MCNP. A
scalar quantity — speedup factor is defined in equation 2.20 to facilitate the com-
parison, where @ is the speedup factor of computing unit d relative to the CPU, N
is the floating-point operations count (or equivalently, the number of photons in the
simulation) that has been cancelled out, and t. and ¢4 are the time of the benchmark

test taken by the CPU and the computing unit d, respectively.

. r
== (2.20)
T d

2.8.1.2 Performance Comparison with Contemporary Study

The similarity between this research and Chen et al. (2012)’s work in the as-
pect of GPU-based CT dose distribution calculations allows us to perform a cross-
study comparison as an alternative way to evaluate the computing efficiency of
ARCHERgpy. Chen et al. (2012) simulated a CT scan using phantoms with three
different spatial resolutions, and listed the corresponding voxel dimensions, number
of voxels, number of photons and computation time. According to these data, we
modify the dimensions of our abdomen phantom and run the Monte Carlo simu-
lations under similar geometry conditions. Besides, to keep the hardware similar,
we choose the Tesla M2090 GPU (ECC on) with a theoretical peak performance of
1331 GFLOPS to compete with the GeForce GTX 285 GPU (without ECC support)
with 1063 GFLOPS used by Chen et al. (2012). Considering the fact that the ECC
mode negatively affects the GPU performance, it is safe to assume the two GPUs

have approximately the same computing power (Liu et al. 2014a).

26

2.8.2 Energy Efficiency

Apart from the computation performance, the energy efficiency is another
critical factor, because it is directly associated with the total operating cost and
environmental impact of a computing platform. In this study it is evaluated by
running a standardized Monte Carlo test on different platforms. The test simulates
a single-rotation axial scan over the abdomen region of the 73 kg adult male phan-
tom. It should be pointed out that here we specifically focus on calculating the
energy efficiency of each computing hardware for the parallel Monte Carlo trans-
port subroutine alone, and neglect the energy consumption by the serial portion of
ARCHER code such as the File I/O and data pre-processing, and by other hardware
components such as the system memory and cooling device. Besides, the energy con-
sumption by the idle CPU when the GPU or coprocessor is being tested is ignored.
Accurate measurement of the overall system power draw for the whole run is of
equal importance and can be done by directly connecting the server to the external
power meters, but this is beyond the scope of discussion here.

Currently there has not been a commonly accepted and adopted metric for
energy efficiency quantifications. Thus several quantities as follows are investigated

together (Liu et al. 2014a).

e Power The power is defined as the energy per unit of time, a measure of instan-
taneous energy consumption. We used the platform-specific, software-based
monitoring tools to poll the hardware and sample the power at regular intervals
while ARCHER is running. The GPU platform provides two command-line
utilities to do that. One is nvidia-smi (Nvidia. 2013f) for GPU hardware ad-
ministration, and the other is nvprof (Nvidia. 2013¢g) for GPU code profiling.
We chose nvidia-smi instead of nvprof, because the latter appears to be more
intrusive to the GPU and can cause a slight power overestimate. The copro-
cessor platform also provides two utilities. One is micsme (Intel. 2013g) to
log the performance, temperatures, and core usage of the coprocessor. The
other is the Performance Application Programming Interface (PAPI) (Don-
garra 2013). We adopted micsme rather than PAPI, since the latter has a

low time resolution on the order of second only. Currently our CPU platform

57

based on the Westmere microarchitecture lacks an effective software solution
for power monitoring. Therefore we use the benchmark result provided by
SPEC. (2014) as a legitimate power estimate — 129 Watts for 100% CPU
utilization and 40 Watts for the idle CPU.

On the other hand, according to Hennessy & Patterson (2012), the peak power
is often 1.5 times higher than the Thermal Design Power (TDP). It is thus
justifiable to use TDP directly as the CPU power estimate, which will lead to a
conservative comparison of the energy efficiencies of the hardware accelerators

and the CPU.

Energy This metric reflects the total energy demand of the computing unit for
a given task, regardless of its performance. It was calculated by integrating

the sampled power data over time.

FLOPS per Watt The FLoating-point Operations Per Second (FLOPS) is a
measure of the performance of a given computing unit, widely adopted by
the high performance computing industry, including Top500. (2013). The
FLOPS per Watt metric takes the power issue into account, and is adopted
by Green500. (2013) as an essential index of energy efficiency. In this study,
the FLOPS of 32-bit single precision was measured using the GPU profiling
tool nvprof (Nvidia. 2013g), and the average power is calculated by dividing
the total energy consumption by the computing time. Due to lack of software
tools, the GPU’s FLOPS was used as a rough approximation to that of the
CPU and coprocessor. Note that despite the use of FLOPS as a factor, this
metric in fact does not reflect the platform performance, as is explained in
equation 2.21, where ng is FLOPS per Watt, R is the FLOPS, P is the power,
N is the floating-point operations count, E is the energy consumption, and ¢

is the time of the benchmark test that has been cancelled out.

R
e =5 = (2.21)

&)=

||z

A computing unit that takes a long time to finish a given task but consumes

o8

a little energy may still have high FLOPS per Watt, although such hardware
device is hardly of practical value. It follows that the computing performance
and FLOPS per Watt are two separate factors, both of which should be con-

sidered when evaluating the efficacy of a computing platform.

2.8.3 Cost Effectiveness

While the computing and energy efficiency of a computing platform are two or-
thogonal, important considerations, they both boil down to economy: high computing-
efficiency amounts to high productivity and profit, while high energy-efficiency to low
electricity expense. Ultimately, an economy-related, unified factor is almost always
desired to assist with the buying decision process. Here we establish a simplistic cost
model for our heterogeneous computing system. For a single 4U rackmount server,
we define the cumulative cost C'(t) in unit of US dollar ($) in equation 2.22, where
Cy(t) is the cost unique to the given computing unit (the CPU, GPU, coprocessor,
etc), and Cy(t) is all the cost other than the computing unit.

C(t) =Cs(t)+ Cult)
Ci(t) = CfA0)+CPP(t),i=s,u

(2.22)

Both C,(t) and C,(t) contain two parts, where CS4(0) refers to the capital
cost, i.e. the one-time expenses on the equipment purchase, and CPF(t) refers to
the operating cost, i.e. the continuous expenses on the server operations. The

breakdown of each component is enumerated as follows.

e CY94(0) Chassis, motherboard, power supply, cooling device (fan), chipset,
memory, hard drive, software (operating system, development kit), site infras-

tructure, others.

o C9P(t) Electricity (consumed by all the devices other than the computing

unit), network, labor (unrelated to the computing unit), others.

e C94(0) Computing unit.

29

o C9P(t) Electricity (consumed by the computing unit), labor (related to the

computing unit, such as code porting, staff training).

It should be noted that Cs(t) may be similar to or well larger than C,(t).
Consequently, it may undesirably obfuscate our comparison between various parallel
computing platforms, where the difference lies only in the computing unit alone.
Thus we argue that for the simplicity and clarity of cost analysis, only C,(t) needs
to be taken into account. We herein define a scalar quantity called normalized cost
effectiveness factor in equation 2.23 to carry out this analysis, where W refers
to the normalized cost effectiveness factor for the computing unit d, 7p denotes the

speedup factor in section 2.8.1.1, and C¢(t) and C%(-L) are the cost unique to the

_t
np
CPU and the computing unit d, respectively.

%@:m-ﬁ@)
o O + 0P (223)

oA 0) + 0P

np

Note that the computing unit d with a speedup factor of np can effectively
reduce the computation time from ¢ (referring specifically to the CPU wall time) to
an' Hence for a fixed amount of computation task, the operating cost can also be
reduced accordingly. Further simplifications to equation 2.23 are necessary, due to
the unavailability of the labor cost data for this study. It is thus assumed that the
operating cost only comprises the electricity component, and the following approx-
imation is obtained in equation 2.24, where x denotes the electricity rate in unit of
dollars per Joule, P, and P, refer to the average power draw derived by the method

in section 2.8.2.

COA(0) + kP.t
CM(0) + kPt

né(t) =7p - (2.24)

2.8.4 Profiling
To investigate and understand whether ARCHERgpy has exploited the full

potential of the GPU hardware, additional performance analysis is conducted. The

instruction and the memory statistics are gathered by the GPU profiler “nvprof”

60

(Nvidia. 2013g) for the K40 GPU without using the boost function. The computing
task is the simulation of a single axial scan over the RPI-Adult Male 73kg phantom
in the abdomen region — 1 single batch with 1 x 107 photons. This amount of
computing task is appropriate such that it fully saturates the GPU resource while

it does not overflow the hardware counters.

2.9 Clinical Applications

The performance of ARCHERgpy is assessed in a clinical case at Massachusetts
General Hospital (MGH). ARCHERGpy was used to simulate an abdominal scan
over a patient stricken with prostate cancer and calculate the 3-D absorbed dose
distribution. i.e. the absorbed dose to each voxel is separately quantified. The
scan protocol included a helical scan mode, 120 kVp tube voltage, 250 mAs per
rotation, 16x1.25 mm beam collimation and a pitch value of 1.375:1. A radiation
oncologist outlined the tumor target (prostate) and the structures in its vicinity
(rectum, bladder and femoral head) on the CT images. The stack of images were
then converted into voxelized abdomen phantom for Monte Carlo dose calculations
(Ding et al. 2010). The phantom has 218 x126x60 voxels with voxel dimensions
of 0.1954x0.1954x0.5 em3. A total of 10® photons were simulated in the dose
distribution calculation, which is sufficient to make the statistical uncertainty below

1% in the case of organ dose calculation (Liu et al. 2014a).

CHAPTER 3
RESULTS AND DISCUSSION

“We can only see a short distance ahead, but we can see plenty there that

needs to be done.”

—Turing, Alan

This chapter presents the results of ARCHER development. Section 3.1 demon-
strates how much ARCHER is consistent with the production code MCNPX in the
verification tests, discusses how different summation strategies impact the accuracy
of the GPU code, and illustrates the degree of agreement between the simulated and
the realistic geometry models of ARHCER in the validation tests. In section 3.2,
the computing and energy efficiency of different parallel Monte Carlo codes on dif-
ferent hardware platforms is compared, accentuating the performance advantage of
the hardware accelerators. Finally, section 3.3 shows the preliminary performance

result of applying ARCHER to a clinical CT dosimetry case.

3.1 Verification and Validation
3.1.1 Verification of ARCHER for CT with MCNPX
ARCHER is verified against MCNPX version 2.5.0 in organ dose calculations

using four different heterogeneous phantoms. Sufficiently many particles are simu-

lated to ensure that the relative standard deviation is restricted to 0.5% for both

Portions of this chapter previously appeared as: Liu, T., Ji, W. & Xu, X. G. (2013), Devel-
opment of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi
architecture, in ‘International Conference on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013)’, Sun Valley, ID, pp. 1199-1210.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).

61

62

ARCHER and MCNPX. The results of three ARCHER variants only have negligible
differences primarily caused by different number of threads used at runtime. Thus
for brevity here we only demonstrate the results from ARCHERgpy. The data are
listed in appendix A. The statistical information is summarized in table 3.1. This
level of agreement between ARCHER and MCNPX is considered excellent in the
CT dose calculations.

The slight difference between the results by ARCHER and by MCNPX is
attributed to four factors. First, the pseudo-random number generators are dif-
ferent. MCNPX adopts Lehmer 48-bit linear congruential generator(LCG) (X-5
Monte Carlo Team 2003a,b), while ARCHER uses the 32-bit Xorshift generator
(Nvidia. 2012). Second, MCNPX models the Doppler broadening effect and the
X-ray fluorescence for 12 < Z < 30, while ARCHER does not. This is the only
difference between the interaction models of the two codes. Third, for efficiency con-
sideration, ARCHER replaces on-the-fly calculations with linear interpolation from
lookup tables in several subroutines, such as the calculation of fictitious macroscopic
cross-section and the incoherent /coherent scattering polar angle. The interpolation
errors may affect the results. Fourth, ARCHER uses the single-precision floating
point while MCNPX uses the double-precision (Liu et al. 2014a).

One important factor associated specifically with the accuracy of ARCHERgpy
is the way to collect the dose results from each individual thread and sum them up
to get a final answer. As is mentioned in 2.4, both atomic and parallel summation
methods have their particular advantages over each other. For the former method,
however, as the problem size scales up, the numerical error can become increasingly
noticeable, as illustrated in figure 3.1. In this test case, the 73 kg RPI adult male
phantom is used, and dose to the red bone marrow from a single axial scan around
the abdominal region is calculated. Using the single-precision floating point format,
the atomic summation gradually fails after the number of photons exceeds 10%, the
result being smaller than the true value. This deviation is due to the fact that as the
sum becomes larger, more and more low-order digits of a small floating point number
added to it are discarded. In contrast, the result obtained by parallel summation

maintains good consistency, being less than 0.4% different from MCNPX. In this

63

Table 3.1: Comparison of the dosimetric results calculated by ARCHER
and MCNP in terms of the percentage difference, defined as
|ARCHER — MCNP|/MCNP. The absolute value is used to
avoid an overestimate of the accuracy where the positive and
negative differences accidentally cancel out.

total number maximum minimum average
case of photons difference difference difference
simulated %] [%%] %]
73 kg RPI adult 9 % 108 0.87 0.03 0.29
male phantom
142 kg RPI adult 9 % 108 1.67 0.01 0.31
male phantom
122 kg RPI adult 8.3 x 108 1.03 0.00 0.42
female phantom
RPI 9-month 82 % 108 1.92 0.04 0.37

pregnant female

method, which is based on the classic pairwise summation, the two floating pointer
numbers added together are generally not several orders of magnitude different;
hence a smaller numerical error (Liu et al. 2013).

In theory, numerical errors due to the atomic operation can be removed by
using the double precision floating point arithmetic. Currently, 64-bit floating point
atomic addition is not directly supported by CUDA GPUs. Nvidia proposed a
compare-and-swap algorithm that emulates the double precision arithmetic (Nvidia.
2013b). This emulation method, however, considerably reduces the overall compu-

tational performance and is not feasible in fast dose calculations (Liu et al. 2013).

3.1.2 Validation of ARCHER for CT with Experiment

The results of the dosimetric comparison are shown in figure 3.2, table 3.2
and table 3.3. The relative standard deviation (RSD) in the experiment is 5%
according to the manufacture-provided data (Radcal. 2014) for the cadaver case,
and is calculated from multiple OSL dosimeter readings for the ATOM phantom

case, while that in the Monte Carlo simulation is the statistical uncertainty of the

64

1.0E+08 1.0E+09
5% :
é LA A
e e
; ; ; N g oo
B/ SRR SN S S SO N S—
¢
TV S S NS S N S
esingle-precision, atomic summation oo
-15% o)] B B S
mdouble-precision, atomic summation oo
Asingle-precision, parallel summation Q
-20% ‘ ‘ ‘

Figure 3.1: The influence of parallel and atomic summation methods over
the accuracy of ARCHERgpy in organ dose calculations.
This test simulates a single axial scan over the abdominal
region using the 73 kg RPI adult male phantom.

mean values. It is found from the output DICOM files that even if scan protocols
are kept exactly the same, the X-ray tube starting position (“trigger on position
(0043,1040)”) in the three measurements is always a random value, annotated in
the figure 3.2. The dose difference in the cadaver and ATOM case is within 29%
and 40%, respectively. It should be pointed out that the experimental measurement
of the dose to the esophagus in the ATOM phantom case is very unreliable, because
firstly, only 1 OSL dosimeter was planted in the very beginning slice of ATOM
phantom in the experiment, secondly that slice was not completely covered by one
scanner rotation, and thirdly the modulated tube current applied was low (120 mA
on the average). If this data is excluded, then the dose difference would become

within 16%.

65

measurement

MC simulation

paravertebral gutter urinary bladder

liver colon left kidney

stomach

45

[Aow] asop

15

organ

(a) 120kVp.

T T
o F—e—rt ! - c||&
, , m.m 3
o —e— | ! c 8|2
, , o S|l¢E
o —e— | [EIE
\\\\\\\\ o O\,\\\\\\\\\\,\\\\\\ SSlm
T | © g
Nn—> —eo—| e o Olfs
o | | mM o
1_ N | [
<t———>» —eo— & 2
58 o)) | | FE) =
A N 4
F—— 1> —eo— o , g
- N o el g
D) , ,
, g —o— 3
[| £
[. ¢ b
| e
\\\\\\\\\\ Fmmmm o mmmm——— - =
| o —e— |
[[c
| @ —e— | IM
o
[[

g ® [
\\\\\\\\\\ i
[| ee | [

[[

I He-o— I 2
[[
| He-o— |
““““““ L J e R S A S S
” « e
I o | —e— m
[[g
[o 1 —eo—|
[l [l
To) o To) o
I\ N - —
[Aow] asop

organ
(b) 100kVp.

Figure 3.2: Validation of ARCHER with the experimental measurement

using the human cadaver, (a) 120kVp and (b) 100kVp, fixed

300mA tube current.

66

Table 3.2: Validation of ARCHER with the experiment using the human
cadaver, 120kVp, fixed 300mA tube current. The X-ray tube
starting position (“trigger on position (0043,1040)”) is a ran-
dom value even when the scan protocols are kept exactly the

same.

kVp 120 100

organ difference [%)]

starting location [°] 290 109.6 114.3 294.8 294.1 293
stomach 15.88 21.26 18.83 22.32 16.9 18.47
liver 0.06 -16.56 -15.38 3.06 298 241
colon 15.19 -15.8 -16.05 1491 15.08 15.54
left kidney 8.31 4.57 2.99 28.88 22.88 21.84
paravertebral gutter -5.98 4.33 3.52 -8.18 -9.73 -9.29
urinary bladder 14.51 -17.63 -15.47 15.74 13.63 15.58

Table 3.3: Validation of ARCHER with the experiment using the ATOM
physical phantom, 120kVp, tube current modulation.

organ experiment ARCHER difference [%]
dose [mGy] RSD dose [mGy] RSD

lung 13.8 15.7 11.90 0.01 -13.7

thyroid 14.2 37.1 16.25 0.11 144
esophagus 10.1 NA 14.06 0.21 39.2

heart 12.8 74 1210 0.10 -5.5

stomach 11.6 10.2 9.74 0.12 -16.0

liver 13.0 10.3 12.37 0.05 -4.9

spleen 12.2 10.3 10.54 0.17 -13.6
kidneys 11.9 4.7 11.57 0.16 -2.8

thymus 18.8 NA 15.80 0.21 -15.9

67

The relative standard deviations of both experiments and simulations are a
measure of the precision, not accuracy of the dose presented. The observed difference
is attributed to the inherent systematic errors that affect the accuracy. ARCHER
contains more sources of systematic errors, not in the photon transport models that
have been verified with MCNPX, but in the geometry modelling. The most signif-
icant error may come from the CT scanner model. Using the C'T'DI;y, phantom,
20 mm beam collimation and 100 and 120kVp, a difference of 0.27% ~ 5.22% be-
tween the experiments and simulations was reported in the previous study (Ding
2012). Recently, we have simulated the half value layers and compared against the
experiments in the isocenter. The differences are shown in table 3.4. This indicates
that there is still room for improving our CT scanner model. A second contributory
factor lies in the algorithm that converts the DICOM images to a patient-specific
phantom. The analytically derived densities and elemental weights may occasion-
ally have large deviation from the true values, specifically for the weight fraction
of carbon and oxygen atoms (Schneider et al. 2000). The systematic errors in the
experiment is believed to be relatively small and can come from the dosimeter sys-
tem (Liu et al. 2014, Zhang et al. 2014). Eventually, it is worth reiterating that the
observed discrepancy between ARCHER and experiment does not indicate a flawed
physics model developed in this study — which contrarily has been proven very
accurate, but simply suggests that the approach established by previous study to

simulate the experiment is not ideal and can be improved.

Table 3.4: Comparison of half value layers (HVL) in the isocenter by ex-
perimental measurements and Monte Carlo simulations using
GE LightSpeed 16 Pro CT scanner.

kVp experiment [mm| ARCHER [mm] difference

80 2.30 4.95 -6.58%
100 6.48 6.13 -5.39%
120 7.52 7.14 -5.07%

140 8.43 8.03 -4.76%

68

3.2 Performance Analysis

The performance of the developed code is evaluated from two perspectives.
One is the conventional factor — computing efficiency, i.e. how much time the code
needs to take to complete a given simulation task. The other is the new factor
introduced by the modern parallel computing industry — energy efficiency, i.e. how
much energy it needs for a given task. These two factors are orthogonal, in that
a code that appears very fast on a many-core parallel processor may undesirably
demand a large amount of energy and therefore a high electricity cost, whereas a
code that appears very energy-saving on a certain platform may take unsought,

extremely long time.

3.2.1 Computing Efficiency
3.2.1.1 Performance Comparison of Different Codes

The execution time of different parallel Monte Carlo codes is listed in table 3.5.
All the ARCHER variants are found to be computationally efficient and are substan-
tially faster than the parallel MCNPX running with 12 MPI processes. There are
three major reasons: first, MCNPX used in this research is a pre-compiled executable
with O1 optimization level and double-precision floating point, while ARCHER uses
more aggressive optimizations and single-precision format. Second, there are three
major differences in the algorithm. (1) ARCHER adopts an improved method for
biased source sampling, in which the initial photon position is bounded by the slot
created by the “cookie cutter” object mentioned in section 2.5.1, leading to a higher
acceptance rate in the rejection sampling process. (2) The Woodcock delta track-
ing method used in ARCHER for path-length sampling is an efficient alternative to
the conventional surface-to-surface ray-tracing adopted by MCNPX. (3) To increase
the speed, ARCHER uses the lookup table interpolation instead of the on-the-fly
rejection sampling used in MCNPX. Third, MCNPX is a general-purpose produc-
tion Monte Carlo code that supports many applications outside of medical physics.
In contrast, ARCHER is developed specifically for CT simulations, and has been

optimized for that specific class of computational models.

69

Table 3.5: Computation time of different Monte Carlo codes running on
different hardware architectures for a whole-body CT scan

simulation.

A total of 9 x 10® photons are simulated (90

batches, 1 x 107 photons per batch). The numbers in brack-
ets are the speedup factors (77p) compared to ARCHERcpy.

P=MPI processes, T=threads, S=GPU streams.

execution

code hardware condition time [min] FOM e
__ provement
(77P)
parallel MCNPX 2265049 p 476.35 baseline
CPU
X5650 11.22 (base-
ARCHE
RC RCPU CPU 1 P, 12 T/P line) 21.03 %
ARCHERGpy M2090 158 2.08 (5.40 x) 113.46x%
GPU
M2090
ARCHE
RCHERGpy GPU X6 15 S 0.37 (30.23 x) 635.65x
ARCHERGpy K20 GPU 158 1.75 (6.40 x) 134.65x
ARCHERGpy Ka0- GPU 5 1.03 (10.89 x) 228.90x
with boost
)C<1L26U50 and CPU: 1 P, 12
ARCHE :
RCHERcpu+cpy K40 GPU g/P, GPU: 15 0.95 (11.85 x) 249.11x
with boost
ARCHERcpuirgpu X5650 CPU: 1 P, 12
CPU and T/P, first 5
V2000 GPUs 5 g 038(2059x) 622.19x
GPU x6 last GPU 4 S
ARCHERcop SLOp co- ey by TP 333 (337 x) T0.87x
processor
X5650 CPU: 12 P,
ARCHERcpu+cor Py and 1 T/P, copro- 250 (434 x) 91.25x
5110p co- cessor: 60 P,4 ’)
processor T/P

To evaluate the performance of different hardware architectures, the parallel

ARCHERgpy code is used as the basis to derive the speedup factors 7p.

Both

70

ARCHERgpy and ARCHERop exhibit a good capability in accelerating MC cal-
culations compared to the CPU counterpart running with 12 threads. In addition,
ARCHERgpy was found to be faster than ARCHERop by a factor of 60% ~ 223%.
It is also interesting to observe that in the case of 1 CPU and 6 M2090 GPUs, there
is more number of batch iterations due to smaller number of streams used, and
that the benefit of using CPU is suppressed by the increased period of low GPU
occupancy, causing a slight performance reduction.

Another important performance factor worthy of comparison is the Figure Of
Merit (FOM) (X-5 Monte Carlo Team 2003a), defined as the inverse of R*T', where
R is the relative standard deviation and 7' is the execution time. It is known that
MCNPX adopts the more statistically efficient path-length estimator to calculate
the radiation dose (X-5 Monte Carlo Team 2003a), which results in smaller R than
the collision estimator used by ARCHER. However, it is found that the high com-
puting efficiency of ARCHER significantly reduces T, offsets its slightly larger R
and therefore enhances the overall FOM. We normalize the average FOMs across
all the tallied doses by different codes to MCNPX’s average FOM. The results are
listed in table 3.5.

-m-4.5e7 photons with streams
—-A-4.5e7 photons without streams
A -

-@-9e8 photons with streams

—~<-9e8 photons without streams

Number of GPUs

Figure 3.3: Performance of ARCHERgpy in a strong scaling problem
using 1~6 Nvidia M2090 GPUs. The computing task was
the simulation of a whole-body axial scan over the RPI-Ault
Male phantom (90 batches). The different total number of
photons across all the batches are listed on the figure.

71

The scalability of ARCHERgpy is studied through a strong scaling problem,
in which given a fixed-size Monte Carlo simulation, the computing efficiency is mea-
sured as the amount of hardware resource changed. The result in figure 3.3 shows
that the speedup factors of ARCHERgpy over ARCHERGpy increases almost pro-
portionally as the number of GPUs increased from 1 to 6, indicating a good scal-
ability. The result also underscores the fact that the GPU stream implementation
is capable of improving the performance when the number of photons in a single
batch is not sufficiently large to consume the hardware resource of a single GPU.
Specifically, for the M2090 GPU, the achieved occupancy (the actual number of
active warps per SM divided by its maximum value) p is approximately 1/3. The
Fermi-generation GPU allows a maximum of w = 48 active warps per SM and has
a total of s = 16 SMs. Each warp contains ¢ = 32 threads, and each thread sim-
ulates n = 100 photons. It follows that at least N = pwstn = 819,200 photons
are required to fully occupy the GPU at runtime. When the computing task was
reduced from 9 x 10% to 4.5 x 107 photons for 90 batches, the number of photons
per batch is reduced from 1 x 107 (> N) to 5 x 10° (< N), leading to a hardware
underutilization. This is effectively avoided by concurrently simulating 15 batches

through GPU streams (Liu et al. 2014a).

3.2.1.2 Performance Comparison with Contemporary Study

The performance comparison between ARCHERgpy and Chen et al. (2012)’s
GPU code is shown in table 3.6. The geometry of our abdomen phantom is altered
to match with Chen et al. (2012)’s parameters. While ARCHERgpy underperforms
by 16% in the low resolution case, it is much faster in the other two cases, and the
performance improvement is more remarkable as the phantom resolution becomes

higher (Liu et al. 2014a).

3.2.2 Energy Efficiency
The power draw by different computing devices as a function of time is plotted
in figure 3.4. There are two qualifications regarding these curves. First, they apply

to the parallel Monte Carlo photon transport process, and do not account for any

other sequential code. Second, for ARCHERgpy and ARCHERcop, the curves

72

Table 3.6: Performance comparison with Chen et al. (2012). The same
geometric parameters and number of photons are chosen to
be consistent with their study.

voxel total num- computation computation

voxel . voxel . .

resoli chmen— - ber of pho— time by time by speedip

tion sion ber tons simu- Chen et al. ARCHERgpu
[mm3] lated (2012) [sec] [sec]
0.068x 512x

high 0.068x 512x 1.8x10° 328.2 102.22 3.21x
0.3 12
0.136x 256x

medium 0.136x 256 % 1.0x10° 76.2 56.79 1.34 %
0.3 12
0.272x 128x

low 0.272x 128x 0.5x10? 24 28.63 0.84 %
0.3 12

only consider the power consumed by the hardware accelerators and do not include
that by the idle CPU. Clearly, the K20 GPU (Kepler) requires the least amount
of instantaneous power supply, whereas the 5110p coprocessor demands the most
compared to other computing devices.

The energy consumption, i.e. the power integrated over time, is listed in ta-
ble 3.7. There are two sets of data, one ignoring the energy contribution from the idle
CPU (labelled as device), the other including it (labelled as total). The contribution
from the idle CPU is not significant and the rankings of the energy consumption by a
certain computing device in these two sets of data are the same. Obviously, although
the hardware accelerators in general requires higher power supply, they demonstrate
excellent overall energy-saving capability. Particularly outstanding is the GPU plat-
form. As the hardware evolves from M2090 GF110 chip, to K20 GK110 chip and
to K40 GK110b chip, the energy budget for the given computing task is able to be
significantly reduced. Further, when the GPU boost function is enabled on the K40
GPU, the benefit of higher GPU core frequency and faster code outweighs the cost

of increased power usage. The coprocessor appears less energy efficient, surprisingly

73

160 T T T T T H— T
150
140
130
120

110

Power [Watt]

100}

ook . L L A L X5650 CPU 1
: : : : M2090 GPU
: : || - | —+— K20 GPU

80F L TR beoenoeee | ——+— K40 GPU wi thout boost |
: : : : —+—— K40 GPU wi th boost

| © | <« 5110P COP

70 i i s i i IIII 1 1
0 5 10 15 20 25 70 75 80
Time [sec]

Figure 3.4: Comparison of the power draw by ARCHER variants run on
the CPU, GPU and coprocessor platform respectively.

than the Fermi GPU that was released one and half year earlier. An alternative
ground on which to compare the energy efficiency is the metric FLOPS per Watt,
as is described in section 2.8.2. The result is shown in figure 3.5. This metric —
important in the High Performance Computing (HPC) field — is interchangeable
with the device energy consumption, because it is legitimate to assume that the

FLOPS are identical across all the ARCHER variants (Liu et al. 2014a).

74

Table 3.7: Power and energy use by different codes on different hardware
platforms. The computing task is the simulation of a single
axial scan over the RPI-Adult Male 73kg phantom in the ab-
domen region (1 single batch with 1 x 10® photons). For the
GPU and coprocessor cases, the power draw by the idle host
is non-zero, and is included in the total energy consumption

estimate.
device total
energy
average con- average energy consump-
code hardware power sump- power tion
tion
draw draw
Watt] [Joule] Watt] [Joule]
ARCHERcpy X5650 CPU 129 9675 129 9675 (baseline)
ARCHERgpy M2090 GPU 137.04 2037.81 177.04 2632.61 (3.68x)
ARCHERgpy K20 GPU 98.69 1274.72 138.69 1791.37 (5.40x)
ARCHERgpy K.40 GPU 103.84 914.88 143.84 1267.29 (7.63x)
without boost
ARCHERgpy K_40 GPU 121.93 909.28 161.93 1207.59 (8.01x)
with boost
ARCHERcop °110P COPIO™ 14970 3406.03 180.78 4315.65 (2.24x)

Cessor

5

X5650 CPU

M2090 GPU

K40 GPU wi t hout boost

Conputing unit

K40 GPU wi th boost

5110P COP

0 50 100 150 200 250 300 350
MFLOPS per \att

Figure 3.5: MFLOPS per Watt ng (larger is better). As the time unit
cancels out, this metric reflects for a given energy budget,
the amount of work the hardware platform is able to do with
the platform-specific code. For the hardware accelerators, ng
only accounts for the device energy usage. 7g is an equivalent
quantity to the “device energy consumption” in table 3.7.

3.2.3 Cost Effectiveness

The parameters necessary for cost effectiveness analysis are listed in table 3.8.
The price estimates were obtained on 06/22/2014 from various sources: the electric-
ity rate is from US Energy Information Administration. (2014); the CPU price is
from the online retailer Newegg. (2014a); the M2090 GPU price is from the online re-
tailer Amazon. (2014b); the K20 GPU price is from Amazon. (2014a); the K40 GPU
price is from Newegg. (2014b); the 5110p coprocessor price is from the server retailer
Acmemicro. (2014). The calculated normalized cost effectiveness factors of different
computing unit relative to the Intel Xeon 5650 CPU are plotted in figure 3.6. The

initial values of n&(¢) can be used as a rough measure of the

‘worthiness” of a given
computing unit. Suppose that, compared to a CPU, the hardware accelerator were

twice faster, but four times more expensive, then n(0) = 0.5 < 1, which means

76

without considering its long-term energy-saving capability, it would not be worth-
while to purchase the hardware accelerator as its performance was overshadowed by
its price. Fortunately, this is not the case. On figure 3.6 all the initial values exceed
1, demonstrating a clear edge of the hardware accelerators over the CPU, and this

advantage tends to increase over the time.

Table 3.8: Parameters requisite for cost effectiveness evaluation. The
K40 GPU works in the boost mode.

parameter meaning value

K electricity rate per kWh $ 0.2087

CUCA’C(O) capital cost of one Xeon 5650 CPU $ 799.99
capital cost of one M2090 GPU $ 1570

cead) capital cost of one K20 GPU $ 2695
capital cost of one K40 GPU $ 5299.99
capital cost of one 5110p coprocessor $ 2162

P, average power draw by one Xeon 5650 CPU 129 W
average power draw by one M2090 GPU 177.04 W

o average power draw by one K20 GPU 138.69 W
average power draw by one K40 GPU 161.93 W
average power draw by one 5110p coprocessor 189.78 W
speedup factor of M2090 GPU 5.40 %
speedup factor of K20 GPU 6.40x

" speedup factor of K40 GPU 10.89x

speedup factor of 5110p coprocessor 3.37x

77

8 T T T T
——— M2090 GPU : :
——— K20 GPU : -
K40 GPU with boost : 7
M s110Pp COP | A T

Nor mal i zed cost effectiveness factor

Tinme [year]

Figure 3.6: Normalized cost effectiveness factor nd(t) (larger is better).

The initial values (73(0)) are labelled on the figure.

3.2.4 Profiling

The detailed profiling results of ARCHERgpy are shown in table 3.9, figure 3.7
and table 3.10. There are several interesting findings. First, although the code
contains many conditional branches, the majority of them are not divergent. In
other words, threads in a warp uniformly enter the same branch for most of the
time. However, those divergent threads in a warp tend to execute a large amount
of instructions to the extent that their peers are made inactive by the GPU mask
for most of the time, resulting in a very low warp execution efficiency. This means
that the “branch divergence” problem inherent in the GPU-based Monte Carlo code
indeed reduces the hardware utilization. Second, the execution dependency appears
to be the dominant reason for instruction stalls in figure 3.7. This mainly results
from the very frequent access to the global and local memories, which are known to
have long latency Nvidia. (2014). Third, for the global memory read in particular,
the access pattern is scattered, irregular due to the random nature of Monte Carlo

methods, and the GPU-favored coalesced memory access can hardly be achieved.

78

Consequently, a single memory load request from a warp typically leads to multiple

actual transactions.

Table 3.9: Instruction statistics. The K40 GPU with compute capability

of 3.5 does not provide a counter for branch efficiency evalu-
ation. This specific quantity is measured on the M2090 GPU
(Nvidia. 2013g).

metrics meaning value
Percentage of issue slots that issued at

issue slot utilization least one instruction, averaged across all 47.93%
cycles

issued TPC Instructions issued per cycle 2.35

executed IPC Instructions executed per cycle 2.05
Ratio of the average active warps per ac-

achieved occupancy tive cycle to the maximum number of 42.18%
warps supported on a multiprocessor
The percentage of time at least one warp

multiprocessor activity is active on a multiprocessor averaged over 95.93%
all multiprocessors on the GPU
Ratio of the average active threads per

warp execution effi- warp to the maximum number of threads 17.82%

ciency per warp supported on a multiprocessor '
expressed as percentage
Ratio of the average active threads per

ward non-predicated ex. VTP executing non-predicated instruc-

P DIt tions to the maximum number of threads 16.67%

ecution efficiency .
per warp supported on a multiprocessor
expressed as percentage

branch efficiency Ratio of non-divergent branches to total 99.20%

branches expressed as percentage

79

Instructions

Synchronization Fetch
0.08% 10.36%
Texture
1.06% Other
11.43%

Data Request
12.19%

Execution
Dependency
64.88%

Figure 3.7: Statistics of instruction stall. The reasons for instruction stall
can be put into 6 categories. (a)Instructions fetch — Percent-
age of stalls occurring because the next assembly instruction
has not yet been fetched. (b) Execution dependency — per-
centage of stalls occurring because an input required by the
instruction is not yet available. (c) Data request — percent-
age of stalls occurring because a memory operation cannot
be performed due to the required resources not being avail-
able or fully utilized, or because too many requests of a given
type are outstanding. (d) Texture — percentage of stalls oc-
curring because the texture sub-system is fully utilized or
has too many outstanding requests. (e) Synchronization —
Percentage of stalls occurring because the warp is blocked
at a __syncthreads() call. (f) Other — percentage of stalls
occurring due to miscellaneous reasons (Nvidia. 2013g).

Table 3.10: Memory statistics (Nvidia. 2013g).

80

metrics meaning value

L1 global hit rate Hit rate in L1 cache for global loads 86.44%

L1 local hit rate Hit rate in L1 cache for local loads 921.39%
and stores

1.2 hit rate (L1 reads) Hit rate at L2 cache for all read re- 50.27%
quests from L1 cache

191 i et (fraine rendk) Hit rate at L2 cache for all read re- 19.14%
quests from texture cache

texture cache hit rate Texture cache hit rate 1.85%
Ratio of requested global memory

global memory load effi- load throughput to required global

: 6.30%

ciency memory load throughput expressed
as percentage
Ratio of requested global mem-

global memory store effi- ory store throughput to required 30.03%

ciency

global memory store throughput
expressed as percentage

3.3 Clinical Applications

In the clinical application test, ARCHERgpy is used to calculate 3-D dose
distribution, i.e. the absorbed doses recorded in a voxel-by-voxel manner. Three
cross-sections of the dose matrix are used to generate the dose map in figure 3.8.
The statistical requirement is such that the doses to all the well-segmented organs

have a relative standard deviation less than 1% (Liu et al. 2014a).

81

Figure 3.8: Calculated CT dose distributions with the prostate, rectum,
urinary bladder and femoral head outlined in green.

The computing efficiency of ARCHERgpy on different GPU models is listed
in table 3.11. This denotes that ARCHERgpy performs very fast in our specific test

82

case, and that the code scales very well when the number of hardware devices is

increased from 1 to 6.

Table 3.11: Computing efficiency of ARCHERgpy in the clinical 3-D dose
distribution calculations.

hardware accelerator execution time [sec]
1 M2090 GPU 6.74
6 M2090 GPUs 1.23
1 K20 GPU 5.60

1 K40 GPU with boost 3.42

3.4 Long-term Development of ARCHER for CT

According to Moore’s law (Moore 1998) — which arguably still maintains its
validity — the exascale computing era will arrive in around 2020. Along with it
will be the drastic change in the hardware architectures and programming models.
The hardware accelerators come into being and rapidly develop in this context.
Distinguished in delivering high FLOPS and having high energy efficiency, they
require developers to either use new platform-specific programming models or fine-
tune the code with new platform-specific tools. On the other hand, the heated
competition between hardware manufacturers in the High Performance Computing
(HPC) industry makes multiple important questions unanswered — which platform
may dominate in the future, which programming model is the best to select and
stick to, whether it is worth the labor and time to port the existing code to the new
architecture, or it is wiser to wait for the conventional hardware to evolve.

The new computing technologies will impact our nuclear engineering and med-
ical physics communities, and expand our view from the computing performance
alone to scalability, energy efficiency, environmental friendliness and a lot more.
With that in mind, we have initiated this long-term research program ARCHER to
develop a new generation of parallel, scalable Monte Carlo package targeted for dif-

ferent computing platforms (figure 3.9). ARCHER is envisioned as a versatile test

83

bed to explore how the new parallel computing platforms can potentially benefit
different applications in our field, to which extent and at what cost (Xu et al. 2013,
Liu et al. 2014a). This study specifically focuses on the photon transport for the
CT imaging dosimetry application. Other studies we have been conducting include
the electron transport for the radiotherapy application (Su et al. 2014) and neutron
transport for the reactor analysis application (Ding et al. 2011, Liu et al. 2012).

Application
« CTimaging
* Radiotherapy
* Shielding design
* Reactor analysis

*
l ARCHER s

Software
Hardware . MPI
« Intel/AMD multi-core CPU * OpenMP
+ NVIDIA Fermi/Kepler GPU * Pthreads
« AMD GCN GPU « CUDA
« Intel MIC coprocessor * OpenACC
+ OpenCL
.« Cilk

Figure 3.9: ARCHER is envisioned as a versatile test bed for the modern
and future parallel computing platforms. It will be designed
as a package of application-oriented codes, having several ver-
sions written in different programming languages, and opti-
mized to different platforms.

CHAPTER 4
CONCLUSIONS

“If one has really technically penetrated a subject, things that previously
seemed in complete contrast, might be purely mathematical transforma-

tions of each other.”

—uvon Neumann, John

4.1 Summary

This research applied the emerging HPC technologies — the GPU and copro-
cessor — to the field of Monte Carlo radiation dosimetry. A new parallel Monte
Carlo package named ARCHER was developed to enable fast and accurate patient-
specific X-ray computed tomography (CT) dose calculations. ARCHER had three
components, the parallel CPU code, the GPU code and the coprocessor code, that
helped us evaluate the performance of various computing platforms.

Corresponding to our objectives, this research has the following conclusions.

e ARCHER is a Monte Carlo simulation tool with practical value and good flexi-
bility. From users’ perspective, ARCHER has three features. First, it provides
convenience for dose estimates by incorporating a built-in model of the GE
LightSpeed 16 Pro CT scanner and a library of preset heterogeneous phan-
toms. Second, it can convert the clinical CT data, i.e. the Digital Imaging and
Communications in Medicine (DICOM) images into heterogeneous phantoms.
Third, it is parallel, highly optimized, and can run on three types of hardware
platforms, the multi-core CPU, the Nvidia GPU and the Intel coprocessor.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).

84

85

These three features make ARCHER a valuable Monte Carlo simulator in the
radiation dosimetry research as well as in the clinical application. They also
allow ARCHER to become a testbed to assess the practical value of different

parallel platforms of today and tomorrow.

ARCHER has accurate transport physics model. The benchmark test against
the production code Monte Carlo N-Particle eXtended (MCNPX) showed
that the photon transport model in ARCHER was very accurate, and that
ARCHER could provide reliable dose estimates provided the input simulation
models were accurate. The comparison with the experiment using the real
human subject exhibited a dose discrepancy by a factor of 29%, indicating
that there was room for improvement on the current CT scanner model and

the phantom generation algorithm.

For CT dose calculations, both the GPU and coprocessor codes of ARCHER
have higher computing, energy efficiency and cost effectiveness, and the GPU
platform takes the large lead. The performance tests demonstrated several
facts. First, ARCHERgpy run on an M2090 (Fermi), K20 (Kepler) or K40 (Ke-
pler) GPU had higher computing efficiency than ARCHERpy on a 6-core Intel
Xeon X5650 CPU (Westmere) by a factor of 5.40 ~ 10.89, while ARCHERcop
on an Intel Xeon Phi 5110p coprocessor (Knights Corner) was faster than the
CPU code by a factor of 3.37. Second, compared to ARCHERcpy, ARCHERgpy
was more energy-efficient by a factor of 3.68 ~ 8.01, while ARCHERcop was
by a factor of 2.24. Third, using the cost-effectiveness model we established,
the GPU platform was found to be 1.64 ~ 2.75 times more economical than
the CPU, and the coprocessor platform was 1.25 times better than the CPU.
Fourth, the GPU stream implementation allowed ARCHERgpy to maintain
good scalability. Fifth, exploitation of system concurrency at different scales —
including multiple GPU grids on a single GPU, multiple GPUs, and CPU-GPU
or CPU-coprocessor — effectively improved the performance. Particularly, it
was concluded that the GPU platform, from the past Fermi architecture to the

current Kepler, outperformed the coprocessor platform of the current Knights

4.2

86

Corner architecture in terms of the computing efficiency and the energy effi-

ciency.

ARCHER has clinical potentials. In the clinical application, it was found that
ARCHERgpy had good performance, taking 3.42 seconds on a K40 GPU and
1.23 seconds on 6 M2090 GPUs to finish the calculations of CT imaging dose
distribution. The current paradigm of CT organ dose calculation is based on
the “indirect and population-averaged patient phantom” approach and carried
out in the off-line retrospective studies. This result suggests that the new
paradigm of “direct and patient-specific” CT dose calculation is feasible with
the use of an efficient Monte Carlo computing engine as an integral part of the
CT imaging process. Doubtless, such a capability will facilitate new research

in CT image quality optimization and dose management.

Future Work

Future work will focus on addressing several limitations in this research (Liu

et al. 2014a) and extending the functions of ARCHER. The specific tasks are listed

below.

e In the dose distribution calculations, for simplicity, we directly used the num-

ber of particles that satisfied the statistical requirement for the case of organ
dose calculation. Ideally there should be a dynamic approach to run the dose
distribution calculation in batches using a preset number of particles, check
the statistics between batches at runtime, and terminate the calculation once

certain statistical requirements imposed on the ROI are met.

The energy analysis adopted the sophisticated software approach and only
applied to the processing units, and not to the system memory, hard drive
and cooling device, whereas a more straightforward and thorough method will
be using the external power meter to obtain the electricity-related information

from the heterogeneous computing system.

Successful realization of accurate, fast, patient-specific organ dose calculation

in clinics requires a chain of efficient tools. ARCHER constitutes the last step

87

of computing and reporting radiation doses provided that the accurate patient
anatomical data are readily available. The tools that precede ARCHER will
be the ones capable of performing fast and reliable image reconstruction, seg-
mentation or outline, and construction of the patient phantoms. These tools

should be carefully surveyed in the future.

The electron module of ARCHER (Su et al. 2014) currently adopts a simplistic
photon transport treatment. Future work is to replace this part with the

accurate transport modelling developed in this study.

The visualization module is currently being developed to display the CT scan-
ner, computational phantom and/or the photon trajectories in 3-D rendered
images. Two approaches are being used. One simple approach is to record
the photon spatial information, save it as a Non-uniform rational basis spline
(NURBS) object to a Wavefront .obj file (Wavefront Technologies. 2013), and
later visualize it in commercial 3-D modelling software such as Rhinoceros
(Robert McNeel & Associates. 2014). The other advanced approach is to vi-
sualize all the information by OpenGL (Woo et al. 1999) and give users full

freedom to customize the image rendering.

A generic front end is being developed to achieve the global level of con-
currency, i.e. the concurrent execution of the CPU, GPU and coprocessor
together. This will maximize the hardware usage and further improve the
computing efficiency of ARCHER on our heterogeneous computing system.
The front end is written in OpenCL (Khronos OpenCL Working Group. 2008)
and will be able to detect the number and type of computing units, split the
simulation task properly, and invoke the existing CPU and hardware acceler-

ator codes.

REFERENCES

Acmemicro. (2014), Intel Xeon Phi coprocessor 5110P price. http:
//www.acmemicro.com/Product/11972/Intel-Xeon-Phi-Coprocessor-
5110P-8GB-1-053-GHz-60-core-x16-PCI-E-2-0-Passive?gclid=
CjgKEAjwt4-dBRCDnaTUn-mC_00SJAC4Q6kG8fI3ubz-kHROQ1KLEImkG_
m4uniwlMBhCbwFOrqfR_D_BwE (Retrieved on July 09, 2014).

Agostinelli, S., Allison, J., Amako, K. e., Apostolakis, J., Araujo, H., Arce, P., Asai,
M., Axen, D., Banerjee, S. & Barrand, G. (2003), ‘GEANT4-a simulation toolkit’,
Nucl. Instrum. Meth. A 506(3), 250-303.

Amazon. (2014a), Nvidia Tesla K20 GPU price. http://www.amazon.com/NVIDIA-
Tesla-K20-Accelerator-900-22081-2220-000/dp/B00AA2CIDC (Retrieved on
July 09, 2014).

Amazon. (2014b), Nvidia Tesla M2090 GPU price. http://www.amazon.com/
Nvidia-Tesla-M2090-Gpu-Card/dp/BOOSTIKPWU (Retrieved on July 09, 2014).

AMD. (2012), APU 101: All about AMD Fusion accelerated processing units, and
how they’'re changing, well, everything. http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2012/10/apul01l.pdf (Retrieved on July 09, 2014).

Amis Jr, E. S., Butler, P. F.; Applegate, K. E., Birnbaum, S. B., Brateman,
L. F., Hevezi, J. M., Mettler, F. A., Morin, R. L., Pentecost, M. J. & Smith,

G. G. (2007), ‘American College of Radiology white paper on radiation dose in
medicine’, J. Am. Coll. Radiol. 4(5), 272-284.

Arnow, B. J. (1994), ‘On Laplace’s extension of the Buffon needle problem’, Coll.
Math. J. 25(1), 40-43.

Attix, F. H. (2008), Introduction to radiological physics and radiation dosimetry,
John Wiley & Sons, Weinheim, Germany.

Badal, A. & Badano, A. (2009), ‘Accelerating Monte Carlo simulations of photon
transport in a voxelized geometry using a massively parallel graphics processing
unit’, Med. Phys. 36(11), 4878-4880.

Badal, A. & Badano, A. (2011), ‘Fast and accurate estimation of organ doses in
medical imaging using a GPU-accelerated Monte Carlo simulation’, Med. Phys.
38(6), 3411.

Baro, J., Sempau, J., Ferndndez-Varea, J. & Salvat, F. (1995), ‘PENELOPE: An al-
gorithm for Monte Carlo simulation of the penetration and energy loss of electrons
and positrons in matter’, Nucl. Instrum. Meth. B 100(1), 31-46.

88

http://www.acmemicro.com/Product/11972/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-x16-PCI-E-2-0-Passive?gclid=CjgKEAjwt4-dBRCDnaTUn-mC_0oSJAC4Q6kG8fI3u5z-kHR0QlkL8ImkG_m4un1w1MBhCbwFOrqfR_D_BwE
http://www.acmemicro.com/Product/11972/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-x16-PCI-E-2-0-Passive?gclid=CjgKEAjwt4-dBRCDnaTUn-mC_0oSJAC4Q6kG8fI3u5z-kHR0QlkL8ImkG_m4un1w1MBhCbwFOrqfR_D_BwE
http://www.acmemicro.com/Product/11972/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-x16-PCI-E-2-0-Passive?gclid=CjgKEAjwt4-dBRCDnaTUn-mC_0oSJAC4Q6kG8fI3u5z-kHR0QlkL8ImkG_m4un1w1MBhCbwFOrqfR_D_BwE
http://www.acmemicro.com/Product/11972/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-x16-PCI-E-2-0-Passive?gclid=CjgKEAjwt4-dBRCDnaTUn-mC_0oSJAC4Q6kG8fI3u5z-kHR0QlkL8ImkG_m4un1w1MBhCbwFOrqfR_D_BwE
http://www.acmemicro.com/Product/11972/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1-053-GHz-60-core-x16-PCI-E-2-0-Passive?gclid=CjgKEAjwt4-dBRCDnaTUn-mC_0oSJAC4Q6kG8fI3u5z-kHR0QlkL8ImkG_m4un1w1MBhCbwFOrqfR_D_BwE
http://www.amazon.com/NVIDIA-Tesla-K20-Accelerator-900-22081-2220-000/dp/B00AA2C1DC
http://www.amazon.com/NVIDIA-Tesla-K20-Accelerator-900-22081-2220-000/dp/B00AA2C1DC
http://www.amazon.com/Nvidia-Tesla-M2090-Gpu-Card/dp/B005TJKPWU
http://www.amazon.com/Nvidia-Tesla-M2090-Gpu-Card/dp/B005TJKPWU
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/apu101.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/apu101.pdf

89

Bayoumi, T., Reda, S. & Saleh, H. (2012), ‘Assessment study for multi-barrier sys-
tem used in radioactive borate waste isolation based on Monte Carlo simulations’,
Appl. Radiat. Isot. 70(1), 99-102.

Berners-Lee, T. & Connolly, D. (1995), Hypertext markup language-2.0, Report
RFC 1866, MIT /W3C.

Berrington de Gonzélez, A. & Darby, S. (2004), ‘Risk of cancer from diagnostic
X-rays: Estimates for the UK and 14 other countries’, The Lancet 363, 345-351.

Bobrowicz, F. W., Lynch, J. E.; Fisher, K. J. & Tabor, J. E. (1984), ‘Vectorized
Monte Carlo photon transport’, Parallel. Comput. 1(3), 295-305.

Boone, J. M., Strauss, K. J., Cody, D. D., McCollough, C. H., McNitt-Gray, M. F.,
Toth, T. L., Goske, M. J. & Frush, D. P. (2011), Size-specific dose estimates
(SSDE) in pediatric and adult body CT examinations, Report AAPM No. 204,
American Association of Physicists in Medicine (AAPM).

Brenner, D. & Huda, W. (2008), ‘Effective dose: A useful concept in diagnostic
radiology?’, Radiat. Prot. Dosimetry 128(4), 503-508.

Brenner, D. J. (2002), ‘Estimating cancer risks from pediatric CT: Going from the
qualitative to the quantitative’, Pediatr. Radiol. 32(4), 228-231.

Brenner, D. J. & Hall, E. J. (2007), ‘Computed Tomography-An Increasing Source
of Radiation Exposure’, N. Engl. J. Med. 357(22), 2277-2284.

Brown, F. B. (2005), Fundamentals of Monte Carlo particle transport, Report LA-
UR-05-4983, Los Alamos National Laboratory (LANL).

Brown, F. B. (2011), ‘Recent advances and future prospects for Monte Carlo’, Prog.
Nucl. Sci. Technol. 2, 1-4.

Brown, F. B. & Martin, W. R. (1984), ‘Monte Carlo methods for radiation transport
analysis on vector computers’, Prog. Nucl. Energ. 14(3), 269-299.

Buffon, G. (1777), ‘Essai d’arithmétique morale’, Histoire naturelle, générale er
particuliere, Supplément 4, 46-123.

Carrier, J. F., Archambault, L., Beaulieu, L. & Roy, R. (2004), ‘Validation of
GEANT4, an object-oriented Monte Carlo toolkit, for simulations in med. phys.’,
Med. Phys. 31(3), 484-492.

Cashwell, E. D., Neergaard, J. R., Everett, C. J., Schrandt, R. G., Taylor, W. M.
& Turner, G. D. (1973), Monte Carlo Photon Codes: MCG and MCP, Report
LA-5157-MS, Los Alamos National Laboratory (LANL).

Chacon, S. (2009), Pro Git. http://git-scm.com/docs (Retrieved on July 09,
2014).

http://git-scm.com/docs

90

Chen, W., Kolditz, D., Beister, M., Bohle, R. & Kalender, W. A. (2012), ‘Fast
on-site Monte Carlo tool for dose calculations in CT applications’, Med. Phys.
39(6), 2985-2996.

Childress, N. L. & Miller, W. H. (2002), ‘MCNP analysis and optimization of a
triple crystal phoswich detector’, Nucl. Instrum. Meth. A 490(1), 263-270.

Seker, V. & Colak, U. (2003), ‘HTR-10 full core first criticality analysis with MCNP’,
Nucl. Eng. Des. 222(2), 263-270.

Dally, B. (2010), GPU computing to exascale and beyond, in ‘The International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC10)’, New Orleans, LA.

Ding, A. (2012), Development of a radiation dose reporting software for X-ray Com-
puted Tomography (CT), Thesis, Rensselaer Polytechnic Institute (RPI), Depart-
ment of Mechanical, Aerospace, and Nuclear Engineering.

Ding, A., Gu, J., Trofimov, A. V. & Xu, X. G. (2010), ‘Monte Carlo calculation of
imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT
as part of prostate cancer treatment plans’, Med. Phys. 37(12), 6199-6204.

Ding, A., Liu, T., Liang, C., Ji, W., Shepard, M. S.; Xu, X. G. & Brown, F. B.
(2011), Evaluation of speedup of Monte Carlo calculations of simple reactor
physics problems coded for the GPU/CUDA environment, in ‘Proceedings of In-
ternational Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering (M&C 2011)’, American Nuclear Society (ANS),
Rio de Janeiro, Brazil.

Ding, A., Mille, M., Liu, T., Caracappa, P. F. & Xu, X. G. (2012b), ‘Exten-
sion of RPI-adult male and female computational phantoms to obese patients
and a Monte Carlo study of the effect on CT imaging dose’, Phys. Med. Biol.
57(9), 2441-2459.

Dongarra, J. (2013), Performance Application Programming Interface (PAPI)
5.3.0.0 reference. http://icl.cs.utk.edu/papi/docs/ (Retrieved on July 09,
2014).

El-Guebaly, L. (1997), ‘Overview of ARIES-RS neutronics and radiation shielding:
Key issues and main conclusions’, Fusion. Eng. Des. 38(1), 139-158.

Everett, C. & Cashwell, E. (1973), MCP code fluorescence-routine revision, Report
LA-5240-MS, Los Alamos National Laboratory (LANL).

Ferrari, A., Sala, P. R., Fasso, A. & Ranft, J. (2005), Fluka: A multi-particle trans-
port code, Report SLAC-R-773, Conseil Européen pour la Recherche Nucléaire
(CERN).

http://icl.cs.utk.edu/papi/docs/

91

Gao, Y., Ding, A., Caracappa, P. F., Xu, X. G., Zhang, D. & Liu, B. (2013), Tube
current modulated Computed Tomography simulation and dose calculation with

Monte Carlo method, in ‘American Nuclear Society 2013 Student Conference’,
Boston, MA.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. & Sunderam, V.
(1994), PVM: Parallel virtual machine: A wusers’ guide and tutorial for net-
worked parallel computing, Scientific and engineering computation series, MIT
Press, Boston, MA.

Goske, M. J., Applegate, K. E.; Boylan, J., Butler, P. F., Callahan, M. J., Coley,
B. D., Farley, S., Frush, D. P., Hernanz-Schulman, M., Jaramillo, D., Johnson,
N. D., Kaste, S. C., Morrison, G., Strauss, K. J. & Tuggle, N. (2008), ‘The Im-
age Gently campaign: Working together to change practice’, Am. J. Roentgenol.
190(2), 273-274.

Green500. (2013), Green 500 supercomputer sites. http://www.green500.org/
greenlists (Retrieved on July 09, 2014).

Gropp, W. (2002), ‘MPICH2: A new start for MPI implementations’, Lect. Notes
Comput. Sc. 2474, 7.

Gu, J. (2010), Development of CT scanner models for patient organ dose calcula-
tions using Monte Carlo methods, Thesis, Rensselaer Polytechnic Institute (RPT),
Department of Mechanical, Aerospace, and Nuclear Engineering.

Gu, J., Bednarz, B., Caracappa, P. F. & Xu, X. G. (2009), ‘The development,
validation and application of a multi-detector CT (MDCT) scanner model for

assessing organ doses to the pregnant patient and the fetus using Monte Carlo
simulations’, Phys. Med. Biol. 54(9), 2699-2717.

Harris, M. (2011), Optimizing parallel reduction in CUDA. http://developer.
download.nvidia.com/assets/cuda/files/reduction.pdf (Retrieved on July
09, 2014).

Health Physics Society. (2010), Fact Sheet: Radiation exposure from medical ex-
ams and procedures. http://hps.org/documents/Medical_Exposures_Fact_
Sheet.pdf (Retrieved on July 09, 2014).

Hennessy, J. L. & Patterson, D. A. (2012), Computer architecture: A quantitative
approach, five edn, Elsevier, Waltham, MA.

Hissoiny, S., Ozell, B., Bouchard, H. & Després, P. (2011), ‘GPUMCD: A new GPU-
oriented Monte Carlo dose calculation platform’, Med. Phys. 38(2), 754-764.

ICRP (2007), The 2007 recommendations of the International Commission on Radi-
ological Protection, Report ICRP 103, International Commission on Radiological
Protection (ICRP).

http://www.green500.org/greenlists
http://www.green500.org/greenlists
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://hps.org/documents/Medical_Exposures_Fact_Sheet.pdf
http://hps.org/documents/Medical_Exposures_Fact_Sheet.pdf

92

Intel. (2003), Intel Hyper-Threading technology technical wuser’s guide.
http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
(Retrieved on July 09, 2014).

Intel. (2010), Intel Many Integrated Core architecture. http://www.many-core.
group.cam.ac.uk/ukgpucc2/talks/Elgar.pdf (Retrieved on July 09, 2014).

Intel. (2012), Intel xeon phi coprocessor 5110p specifications. http://ark.intel.
com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1 (Retrieved
on July 09, 2014).

Intel. (2013a), How to use huge pages to improve application performance on intel
xeon phi coprocessor. https://software.intel.com/sites/default/files/
Large_pages_mic_0.pdf (Retrieved on July 09, 2014).

Intel. (2013b), Intel C++ compiler XE 13.1 wuser and reference guide.
https://software.intel.com/sites/products/documentation/doclib/

stdxe/2013/composerxe/compiler/cpp-win/index.htm (Retrieved on July 09,
2014).

Intel. (2013c¢), Intel xeon phi coprocessor 3120p specifications. http://ark.intel.
com/products/75798/Intel-Xeon-Phi-Coprocessor-3120P-6GB-1 (Retrieved
on July 09, 2014).

Intel. (2013d), Intel xeon phi coprocessor 7120p specifications. http://ark.
intel.com/products/80310/Intel-Xeon-Phi-Coprocessor-7120D-16GB-1
(Retrieved on July 09, 2014).

Intel. (2013e), Intel Xeon Phi coprocessor system software developers
guide. https://software.intel.com/en-us/articles/intel-xeon-phi-

coprocessor-system-software-developers-guide (Retrieved on July 09,
2014).

Intel. (2013f), Intel Xeon Phi product family performance. http:
//www.intel.com/content/dam/www/public/us/en/documents/performance-

briefs/xeon-phi-product-family-performance-brief.pdf (Retrieved on
July 09, 2014).

Intel. (2013g), White paper: System administration for the Intel Xeon Phi coproces-
sor. https://software.intel.com/sites/default/files/article/373934/
system—-administration-for-the-intel-xeon-phi-coprocessor.pdf (Re-
trieved on July 09, 2014).

Intel. (2014), Intel MPI library for Linux OS reference manual. https:
//prdlidz.cps.intel.com/sites/products/documentation/hpc/ics/impi/
41/lin/Reference_Manual/Reference_Manual.pdf (Retrieved on July 09,
2014).

http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
http://www.many-core.group.cam.ac.uk/ukgpucc2/talks/Elgar.pdf
http://www.many-core.group.cam.ac.uk/ukgpucc2/talks/Elgar.pdf
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1
https://software.intel.com/sites/default/files/Large_pages_mic_0.pdf
https://software.intel.com/sites/default/files/Large_pages_mic_0.pdf
https://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/index.htm
https://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/index.htm
http://ark.intel.com/products/75798/Intel-Xeon-Phi-Coprocessor-3120P-6GB-1
http://ark.intel.com/products/75798/Intel-Xeon-Phi-Coprocessor-3120P-6GB-1
http://ark.intel.com/products/80310/Intel-Xeon-Phi-Coprocessor-7120D-16GB-1
http://ark.intel.com/products/80310/Intel-Xeon-Phi-Coprocessor-7120D-16GB-1
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://www.intel.com/content/dam/www/public/us/en/documents/performance-briefs/xeon-phi-product-family-performance-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/performance-briefs/xeon-phi-product-family-performance-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/performance-briefs/xeon-phi-product-family-performance-brief.pdf
https://software.intel.com/sites/default/files/article/373934/system-administration-for-the-intel-xeon-phi-coprocessor.pdf
https://software.intel.com/sites/default/files/article/373934/system-administration-for-the-intel-xeon-phi-coprocessor.pdf
https://prd1idz.cps.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/Reference_Manual.pdf
https://prd1idz.cps.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/Reference_Manual.pdf
https://prd1idz.cps.intel.com/sites/products/documentation/hpc/ics/impi/41/lin/Reference_Manual/Reference_Manual.pdf

93

Jahnke, L., Fleckenstein, J., Wenz, F. & Hesser, J. (2012), ‘GMC: A GPU imple-
mentation of a Monte Carlo dose calculation based on Geant4 Phys’, Phys. Med.
Biol. 57(5), 1217-1229.

Jeffers, J. & Reinders, J. (2013), Intel Xeon Phi Coprocessor High Performance
Programming, Newnes, Boston, MA.

Jia, X., Gu, X., Graves, Y. J., Folkerts, M. & Jiang, S. B. (2011), ‘GPU-based
fast Monte Carlo simulation for radiotherapy dose calculation’, Phys. Med. Biol.
56(22), 7017-7031.

Jia, X., Gu, X., Sempau, J., Choi, D., Majumdar, A. & Jiang, S. B. (2010), ‘Devel-
opment of a GPU-based Monte Carlo dose calculation code for coupled electron-
photon transport’, Phys. Med. Biol. 55(11), 3077-3086.

Jia, X., Yan, H., Gu, X. & Jiang, S. B. (2012), ‘Fast Monte Carlo simula-
tion for patient-specific CT/CBCT imaging dose calculation’, Phys. Med. Biol.
57(3), 577-590.

Johnson, P. B., Whalen, S. R., Wayson, M., Juneja, B., Lee, C. & Bolch, W. E.
(2009), ‘Hybrid patient-dependent phantoms covering statistical distributions
of body morphometry in the US adult and pediatric population’, Proc. IEEFE
97(12), 2060-2075.

Kardjilov, N., De Beer, F., Hassanein, R., Lehmann, E. & Vontobel, P. (2005),
‘Scattering corrections in neutron radiography using point scattered functions’,
Nucl. Instrum. Meth. A 542(1), 336-341.

Kawrakow, I. & Rogers, D. (2000), The EGSnrc code system: Monte Carlo sim-
ulation of electron and photon transport, Technical report, National Research
Council Canada.

Kelvin, L. (1901), ‘Nineteenth century clouds over the dynamical theory of heat and
light’, Lon. Edin. Dub. Phil. Magaz. J. Sci. 2(7), 1-40.

Khronos OpenCL Working Group. (2008), The OpenCL specification. https://
www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf (Retrieved on July,
09, 2014).

Kleijnen, J. P. (1995), ‘Verification and validation of simulation models’, Fur. J.
Oper. Res. 82(1), 145-162.

Kogge, P., Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elno-
hazy, E., Hall, M., Harrison, R., Harrod, W., Hill, K., Hiller, J., Karp, S., Koel-
bel, C., Koester, D., Levesque, J., Reed, D., Sarkar, V., Schreiber, R., Richards,
M., Scarpelli, A., Shalf, J., Snavely, A. & Sterling, T. (2008), Exascale computing

https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

94

study: Technology challenges in achieving exascale systems, Technical report, De-
fense Advanced Research Projects Agency Information Processing Techniques Of-
fice (DARPA IPTO). http://www.cse.nd.edu/Reports/2008/TR-2008-13. pdf
(Retrieved on July, 09, 2014).

Larson, D. B., Johnson, L. W., Schnell, B. M., Salisbury, S. R. & Forman., H. P.
(2011), ‘National trends in CT use in the emergency department: 1995-2007",
Radiology 258(1), 164-173.

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D.; Nguyen, A. D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R. & Dubey, P.
(2010), ‘Debunking the 100X GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU’, ACM SIGARCH Comp. Arch. News 38(3), 451
460.

Lewis, E. E. & Miller, Jr., W. F. (1984), Computational methods of neutron trans-
port, John Wiley & Sons, Weinheim, Germany.

Lewis, M. (2005), ImPACT technology update No. 3: Radiation dose issues in
multi-slice CT scanning, Technical report, St. George’s Hospital. http://www.
impactscan.org/ (Retrieved on July 09, 2014).

Li, X., Samei, E Segars, W. P., Sturgeon, G. M., Colsher, J. G., Toncheva, G.,
Yoshizumi, T. T. & Frush, D. P. (2010), ‘Patient-specific radiation dose and
cancer risk estimation in CT: Part I. Development and validation of a Monte
Carlo program’; Med. Phys. 38(1), 397-407.

Li, X., Samei, E Segars, W. P., Sturgeon, G. M., Colsher, J. G., Toncheva, G.,
Yoshizumi, T. T. & Frush, D. P. (2011), ‘Patient-specific radiation dose and cancer
risk estimation in CT: Part II. Application to patients’, Med. Phys. 38(1), 408
419.

Lindholm, E., Nickolls, J., Oberman, S. & Montrym, J. (2008), ‘NVIDIA Tesla: A
unified graphics and computing architecture’, IEEE Micro 28(2), 39-55.

Liu, T., Ding, A., Caracappa, P. F. & Xu, X. G. (2011), Modeling of obese indi-
viduals using automatic deformation of mesh-based computational phantoms, in
‘56th Annual Meeting of the Health Physics Society’, West Palm Beach, FL.

Liu, T., Ding, A., Ji, W., Xu, X. G., Carothers, C. D. & Brown, F. B. (2012), A
Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU
system and CUDA environment, in ‘International Topical Meeting on Advances in
Reactor Physics (PHYSOR 2012)’, American Nuclear Society (ANS), Knoxville,
TN.

Liu, T., Ding, A. & Xu, X. G. (2012a), ‘Accelerated Monte Carlo methods for
photon dosimetry using a dual-GPU system and CUDA’, Med. Phys. 39(6), 3818.

http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
http://www.impactscan.org/
http://www.impactscan.org/

95

Liu, T., Du, X., Su, L., Gao, Y., Ji, W., Zhang, D., Shi, J. Q., Liu, B., Kalra, M. K.
& Xu, X. G. (2014), Monte Carlo CT dose calculation: A comparison between
experiment and simulation using ARCHER-CT, in ‘AAPM 56th Annual Meeting
& Exhibition’, Austin, TX.

Liu, T., Du, X., Su, L., Ji, W., Carothers, C. D., Shephard, M. S., Liu, B., Kalra,
M., Brown, F. B., Fitzgerald, P. F. & Xu, X. G. (2014a), ‘ARCHER-CT, an
extremely fast Monte Carlo code for patient-specific ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: Part I — software development
and testing’, Phys. Med. Biol. . (submitted).

Liu, T., Ji, W. & Xu, X. G. (2013), Development of GPU-based Monte Carlo code for
fast CT imaging dose calculation on CUDA Fermi architecture, in ‘International
Conference on Mathematics and Computational Methods Applied to Nuclear Sci-
ence & Engineering (M&C 2013)’, American Nuclear Society (ANS), Sun Valley,
ID, pp. 1199-1210.

Love, E., Pauley, K. & Reid, B. (1995), Use of MCNP for characterization of reac-
tor vessel internals waste from decommissioned nuclear reactors, Report INEL-
95/0419, Idaho National Laboratory (INL).

Mack, C. A. (2011), ‘Fifty years of Moore’s law’, IEEE Trans. Semicond. Manuf.
24(2), 202-207.

Marsaglia, G. (2003), ‘Xorshift RNGs’, J. Stat. Softw. 8(14), 1-6.

Mathews, J. D., Forsythe, A. V., Brady, Z., Butler, M. W., Goergen, S. K., Byrnes,
G. B., Giles, G. G., Wallace, A. B., Anderson, P. R., Guiver, T. A., McGale, P.,
Cain, T. M., Dowty, J. G., Bickerstaffe, A. C. & Darby, S. C. (2013), ‘Cancer
risk in 680,000 people exposed to computed tomography scans in childhood or
adolescence: Data linkage study of 11 million Australians’, BM.J 346, 1-18.

MathWorks. (1996), Matlab language reference manual. http://www.mathworks.
com/help/matlab/ (Retrieved on July 09, 2014).

McCollough, C., Cody, D., Edyvean, S., Geise, R., Gould, B., Keat, N., Huda,
W., Judy, P., Kalender, W., McNitt-Gray, M., Morin, R., Payne, T., Stern, S.,
Rothenberg, L., Shrimpton, P., Timmer, J. & Wilson, C. (2008), The Measure-
ment, Reporting, and Management of Radiation Dose in CT, Report AAPM No.
96, American Association of Physicists in Medicine (AAPM).

McCollough, C. H. & Schueler, B. A. (2000), ‘Calculation of effective dose’, Med.
Phys. 27(5), 828-837.

MecNitt-Gray, M. F. (2002), ‘AAPM/RSNA Physics Tutorial for Residents: Topics
in CT. Radiation dose in CT’, Radiographics. 22(6), 1541-1553.

http://www.mathworks.com/help/matlab/
http://www.mathworks.com/help/matlab/

96

Metropolis, N. (1987), ‘The Beginning ofthe Monte Carlo Method’, Los Alamos
Science (15), 125-130.

Miras, H., Jiménez, R., Miras, C. & Goma, C. (2013), ‘CloudMC: A cloud computing
application for Monte Carlo simulation’, Phys. Med. Biol. 58(8), N125.

Moore, G. E. (1998), ‘Cramming more components onto integrated circuits’, Proc.
[EEE 86(1), 82-85.

Moore, S. K. (2010), Multicore CPUs: Processor proliferation, Technical report,
IEEE Spectrum. http://spectrum.ieee.org/semiconductors/processors/
multicore-cpus-processor-proliferation (Retrieved on July 09, 2014).

Na, Y. H., Zhang, B., Zhang, J., Caracappa, P. F. & Xu, X. G. (2010), ‘Deformable
adult human phantoms for radiation protection dosimetry: Anthropometric data

representing size distributions of adult worker populations and software algo-
rithms’, Phys. Med. Biol. 55(13), 3789-3811.

National Research Council (2005), Health risks from exposure to low levels of ionizing
radiation: BEIR VII-Phase 2, Washington, D.C.

NCRP (2009), Ionizing radiation exposure of the population of the United States,
Report NCRP 160, National Council on Radiation Protection & Measurements
(NCRP).

NEMA (1996), Digital imaging and communications in medicine (DICOM), Tech-
nical report, National Electrical Manufacturers Association (NEMA).

Newegg. (2014a), Intel Xeon X5650 CPU price. http://www.newegg. com/Product/
Product.aspx?Item=N82E16819117231 (Retrieved on July 09, 2014).

Newegg. (2014b), Nvidia Tesla K40 GPU price. http://wuw.newegg.com/Product/
Product.aspx?Item=N82E16814132015 (Retrieved on July 09, 2014).

NTH. (2012), Decreasing Patient Radiation Dose from CT Imaging: Achieving Sub-
mSv Studies (UO1). http://grants.nih.gov/grants/guide/pa-files/PAR-
12-206.html (Retrieved on July 09, 2014).

Nowotny, R. & Hofer, A. (1985), ‘Ein Programm fiir die Berechnung von diagnos-
tischen Rontgenspektren’, Fortschr Raontgenstr 142(6), 685-689.

Nvidia. (2011), Nvidia Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf (Retrieved on July 09, 2014).

Nvidia. (2012), CUDA CURAND guide. http://docs.nvidia.com/cuda/curand/
index.html (Retrieved on July 09, 2014).

http://spectrum.ieee.org/semiconductors/processors/multicore-cpus-processor-proliferation
http://spectrum.ieee.org/semiconductors/processors/multicore-cpus-processor-proliferation
http://www.newegg.com/Product/Product.aspx?Item=N82E16819117231
http://www.newegg.com/Product/Product.aspx?Item=N82E16819117231
http://www.newegg.com/Product/Product.aspx?Item=N82E16814132015
http://www.newegg.com/Product/Product.aspx?Item=N82E16814132015
http://grants.nih.gov/grants/guide/pa-files/PAR-12-206.html
http://grants.nih.gov/grants/guide/pa-files/PAR-12-206.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://docs.nvidia.com/cuda/curand/index.html
http://docs.nvidia.com/cuda/curand/index.html

97

Nvidia. (2013a), CUDA C best practices guide. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html (Retrieved on July 09, 2014).

Nvidia. (2013b), CUDA C programming guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/ (Retrieved on July 09, 2014).

Nvidia. (2013¢), GPU occupancy calculator. http://developer.download.
nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls (Retrieved on
July 09, 2014).

Nvidia. (2013d), Kepler tuning guide. http://docs.nvidia.com/cuda/kepler-
tuning-guide/index.html (Retrieved on July 09, 2014).

Nvidia. (2013¢), Nvidia CUDA compiler driver nvce. http://docs.nvidia.com/
cuda/cuda-compiler-driver-nvcc/index.html (Retrieved on July 09, 2014).

Nvidia. (2013f), NVIDIA System Management Interface program. http:
//developer.download.nvidia.com/compute/cuda/5_5/rel/nvml/nvidia-
smi.5.319.43.pdf (Retrieved on July 09, 2014).

Nvidia. (2013g), Profiler user’s guide. http://docs.nvidia.com/cuda/pdf/CUDA_
Profiler_Users_Guide.pdf (Retrieved on July 09, 2014).

Nvidia. (2014), Nvidia Nsight Visual Studio Edition 4.0 user guide. https:
//developer.nvidia.com/nsight-visual-studio-edition-documentation-
and-support (Retrieved on July 09, 2014).

Overberg, M., Moretti, B., Slovacek, R. & Block, R. (1999), ‘Photoneutron target
development for the RPI linear accelerator’, Nucl. Instrum. Meth. A 438(2), 253~
264.

Panneton, F. & L’ecuyer, P. (2005), ‘On the xorshift random number generators’,
ACM TOMACS 15, 346-361.

Paraview. (2014), Paraview users’ guide. http://www.paraview.org/Wiki/
ParaView/Users_Guide/Table_0f _Contents (Retrieved on July 09, 2014).

Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P., Howe,
N. L., Ronckers, C. M., Rajaraman, P., Craft, A. W., Parker, L. & Gonzalez, A.
B. d. (2012), ‘Radiation exposure from CT scans in childhood and subsequent

risk of leukaemia and brain tumours: A retrospective cohort study’, The Lancet
380(9840), 499-505.

Pelowitz, D. B. (2008), MCNPX user’s manual, version 2.6.0, Report LA-CP-07-
1473, Los Alamos National Laboratory (LANL).

Pelowitz, D. B. (2013a), MCNPG6 release 1.0, verification and validation testing,
Report LA-UR-13-xxxxx, Los Alamos National Laboratory (LANL).

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
http://developer.download.nvidia.com/compute/cuda/5_5/rel/nvml/nvidia-smi.5.319.43.pdf
http://developer.download.nvidia.com/compute/cuda/5_5/rel/nvml/nvidia-smi.5.319.43.pdf
http://developer.download.nvidia.com/compute/cuda/5_5/rel/nvml/nvidia-smi.5.319.43.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://developer.nvidia.com/nsight-visual-studio-edition-documentation-and-support
https://developer.nvidia.com/nsight-visual-studio-edition-documentation-and-support
https://developer.nvidia.com/nsight-visual-studio-edition-documentation-and-support
http://www.paraview.org/Wiki/ParaView/Users_Guide/Table_Of_Contents
http://www.paraview.org/Wiki/ParaView/Users_Guide/Table_Of_Contents

98

Pelowitz, D. B. (2013b), MCNP6 user’s manual, version 1.0, Report LA-CP-13-
00634, Los Alamos National Laboratory (LANL).

Phillips, E. & Fatica, M. (2010), CUDA accelerated Linpack on clusters, in ‘GPU
Technology Conference (GTC) 2010°, San Jose, CA.

Purches, J. (2013), Nvidia GPU technology. https://intranet.birmingham.ac.
uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-
31/NVIDIA-Technology-0Overview.pdf (Retrieved on July 09, 2014).

Radcal. (2014), Radcal ion chamber energy dependence graphs. http://www.
radcal.com/pdf/Ion-Chamber-Energy-Dependence-Graphs.pdf (Retrieved on
July 09, 2014).

Ramey, C. & Fox, B. (2010), Bash reference manual. http://www.gnu.org/
software/bash/manual/bashref .html (Retrieved on July 09, 2014).

Rennich, S. (2011), CUDA C/C++ streams and concurrency. http:
//on-demand . gputechconf.com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf (Retrieved on July 09, 2014).

Robert McNeel & Associates. (2014), Rhinoceros 5 user’s guide for Windows. http:
//www.rhino3d.com/download/rhino/5.0/UsersGuide (Retrieved on July 09,
2014).

Rogers, D. W. (2006), ‘Fifty years of Monte Carlo simulations for med. phys.’, Phys.
Med. Biol. 51(13), 287-301.

Romano, P. K. & Forget, B. (2013), ‘The OpenMC Monte Carlo particle transport
code’, Ann. Nucl. Energy. 51, 274-281.

Schlattl, H., Zankl, M. & Petoussi-Henss, N. (2007), ‘Organ dose conversion coef-
ficients for voxel models of the reference male and female from idealized photon
exposures’, Phys. Med. Biol. 52(8), 2123-2145.

Schneider, W., Bortfeld, T. & Schlegel, W. (2000), ‘Correlation between CT num-
bers and tissue parameters needed for Monte Carlo simulations of clinical dose
distributions’, Phys. Med. Biol. 45(2), 459-478.

Seibert. (2011), Nvidia developer zone, CUDA programming and perfor-
mance: Newbie confusion: Thread, block, multiprocessor and processor.
https://devtalk.nvidia.com/default/topic/491744/newbie-confusion-
thread-block-multiprocessor-and-processor/ (Retrieved on July 09, 2014).

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins,
S., Lake, A., Sugerman, J. & Cavin, R. (2008), ‘Larrabee: A many-core x86
architecture for visual computing’, ACM TOG 27, 18.

https://intranet.birmingham.ac.uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/NVIDIA-Technology-Overview.pdf
https://intranet.birmingham.ac.uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/NVIDIA-Technology-Overview.pdf
https://intranet.birmingham.ac.uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/NVIDIA-Technology-Overview.pdf
http://www.radcal.com/pdf/Ion-Chamber-Energy-Dependence-Graphs.pdf
http://www.radcal.com/pdf/Ion-Chamber-Energy-Dependence-Graphs.pdf
http://www.gnu.org/software/bash/manual/bashref.html
http://www.gnu.org/software/bash/manual/bashref.html
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://www.rhino3d.com/download/rhino/5.0/UsersGuide
http://www.rhino3d.com/download/rhino/5.0/UsersGuide
https://devtalk.nvidia.com/default/topic/491744/newbie-confusion-thread-block-multiprocessor-and-processor/
https://devtalk.nvidia.com/default/topic/491744/newbie-confusion-thread-block-multiprocessor-and-processor/

99

Selcow, E. & McKinney, G. (2000), MCNP capabilities at the dawn of the 21st
century: Neutron-gamma applications, in ‘Advanced Monte Carlo for Radiation
Physics, Particle Transport Simulation and Applications’, Springer Berlin Heidel-
berg, Lisbon, Portugal, pp. 643—-650.

Sempau, J., Wilderman, S. J. & Bielajew, A. F. (2000), ‘DPM, a fast, accurate
Monte Carlo code optimized for photon and electron radiotherapy treatment plan-
ning dose calculations’, Phys. Med. Biol. 45(8), 2263-2291.

Serov, 1., John, T. & Hoogenboom, J. (1998), ‘A new effective Monte Carlo midway
coupling method in MCNP applied to a well logging problem’, Appl. Radiat. Isot.
49(12), 1737-1744.

Shammas, N. (1993), Windows batch file programming, Windcrest/McGraw-Hill,
Blue Ridge Summit, PA.

SPEC. (2014), Standard Performance Evaluation Corporation (spec) power bench-
mark for intel xeon x5650 cpu. http://www.spec.org/power_ssj2008/results/
res2011q4/power_ssj2008-20111128-00414.txt (Retrieved on July 09, 2014).

Stallman, R. M. (2003), Using the GNU compiler collection: For GCC version 4.4.7.
https://gcc.gnu.org/onlinedocs/gecc-4.4.7/gcc.pdf (Retrieved on July, 09,
2014).

Stallman, R. M., McGrath, R. & Smith, P. D. (2013), GNU Make. http://www.
gnu.org/software/make/manual/make.html (Retrieved on July 09, 2014).

Stern, S. H. (2007), Nationwide evaluation of X-ray trends (NEXT) tabulation and
graphical summary of 2000 survey of Computed Tomography, Report CRCPD
E-07-2, Conference of Radiation Control Program Directors, Inc. (CRCPD).

Stern, S. H., Spelic, D. C. & Kaczmarek, R. V. (2000), NEXT 2000 protocol for
survey of Computed Tomography (CT), Technical report, Conference of Radiation
Control Program Directors, Inc. (CRCPD).

Su, L., Du, X, L. T. & Xu, X. G. (2013), GPU-Accelerated Monte Carlo Electron
Transport Methods: Development and Applicationfor Radiation Dose Calcula-
tions Using Six GPU Cards, in ‘Joint International Conference on Supercom-
puting in Nuclear Applications and Monte Carlo (SNA & MC 2013)’, American
Nuclear Society (ANS), Paris, France.

Su, L., Yang, Y., Bednarz, B., Sterpin, E., Du, X., Liu, T., Ji, W. & Xu, X. G.
(2014), ‘ARCHERRT, A photon-electron coupled Monte Carlo dose computing
engine for GPU: Software development of and application to helical tomotherapy’,
Med. Phys. 41(7), 0717009.

Top500. (2013), Top 500 supercomputer sites. http://www.top500.org/lists/
(Retrieved on July 09, 2014).

http://www.spec.org/power_ssj2008/results/res2011q4/power_ssj2008-20111128-00414.txt
http://www.spec.org/power_ssj2008/results/res2011q4/power_ssj2008-20111128-00414.txt
https://gcc.gnu.org/onlinedocs/gcc-4.4.7/gcc.pdf
http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html
http://www.top500.org/lists/

100

TYAN. (2010), TYAN FT77-B7015 service engineer’s manual. http://www.tyan.
com/manuals/FT77-B7015_Manual.pdf (Retrieved on July 09, 2014).

US Energy Information Administration. (2014), Average retail price of electricity
to ultimate customers by end-use sector. http://www.eia.gov/electricity/
monthly/epm_table_grapher.cfm?t=epmt_5_6_a (Retrieved on July 09, 2014).

van Heesch, D. (2008), Doxygen: Source code documentation generator tool. http:
//www.stack.nl/~dimitri/doxygen/ (Retrieved on July 09, 2014).

van Rossum, G. (2014), The Python language reference. https://docs.python.
org/2/reference/ (Retrieved on July 09, 2014).

Virtual Phantoms Inc. (2013), Virtual Phantoms web-based software for CT organ
dose calculations. http://www.virtualphantoms.com/ (Retrieved on July 09,
2014).

Wang, B., Xu, X. G. & Kim, C. H. (2004), ‘A Monte Carlo CT Model of the Rando
Phantom’, Trans. Am. Nucl. Soc. 90, 473-474.

Wang, H., Ma, Y., Pratx, G. & Xing, L. (2011), ‘Toward real-time Monte Carlo
simulation using a commercial cloud computing infrastructure’, Phys. Med. Biol.
56(17), N175.

Wavefront Technologies. (2013), Wavefront obj specifications. http://www.
martinreddy.net/gfx/3d/0BJ.spec (Retrieved on July 09, 2014).

Wechser, O. (2014), Developing the HPC compute cores of tomorrow.
http://events.prace-ri.eu/getFile.py/access?contribId=8&sessionld=
O&resId=0&materialld=slides&confId=176 (Retrieved on July 09, 2014).

Woo, M., Neider, J., Davis, T. & Shreiner, D. (1999), OpenGL programming guide:
The official guide to learning OpenGL, version 1.2, Addison-Wesley Longman
Publishing Co., Inc.

Woodcock, E. R., Murphy, T., Hemmings, P. J. & Longworth, T. C. (1965), ‘Tech-
niques used in the GEM code for Monte Carlo neutronics calculations in reactors
and other systems of complex geometry’, Proc. Conf. Applications of Computing
Methods to Reactor Problems 557.

Wu, Y. (2006), ‘Conceptual design activities of FDS series fusion power plants in
China’, Fusion Engineering and Design 81(23), 2713-2718.

X-5 Monte Carlo Team (2003a), MCNP-a general Monte Carlo N-Particle Transport
code, Version 5. Volume I: Overview and theory, Report LA-UR-03-1987, Los
Alamos National Laboratory (LANL).

http://www.tyan.com/manuals/FT77-B7015_Manual.pdf
http://www.tyan.com/manuals/FT77-B7015_Manual.pdf
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
https://docs.python.org/2/reference/
https://docs.python.org/2/reference/
http://www.virtualphantoms.com/
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.martinreddy.net/gfx/3d/OBJ.spec
http://events.prace-ri.eu/getFile.py/access?contribId=8&sessionId=0&resId=0&materialId=slides&confId=176
http://events.prace-ri.eu/getFile.py/access?contribId=8&sessionId=0&resId=0&materialId=slides&confId=176

101

X-5 Monte Carlo Team (2003b), MCNP-a general Monte Carlo N-Particle Transport
code, Version 5. Volume II: User’s guide, Report LA-CP-03-0245, Los Alamos
National Laboratory (LANL).

Xu, X. G., Bednarz, B. & Paganetti, H. (2008), ‘A review of dosimetry studies
on external-beam radiation treatment with respect to second cancer induction’,
Phys. Med. Biol. 53(13), R193-R241.

Xu, X. G., Chao, T. C. & Bozkurt, A. (2000), ‘VIP-Man: an image-based whole-
body adult male model constructed from color photographs of the Visible Human
Project for multi-particle Monte Carlo calculations’, Health Phys. 78(5), 476-486.

Xu, X. G. & Eckerma, K. F. (2010), Handbook of anatomical models for radiation
dosimetry, CRC Press, Boca Raton, FL.

Xu, X. G., Liu, T., Su, L., Du, X., Riblett, M., Ji, W. & Brown, F. B. (2013),
‘An update of ARCHER, a Monte Carlo radiation transport software testbed for
emerging hardware such as GPUs’, Trans. Am. Nucl. Soc. 108, 433-434.

Xu, X. G., Taranenko, V., Zhang, J. & Shi, C. (2007), ‘A boundary-representation
method for designing whole-body radiation dosimetry models: Pregnant females
at the ends of three gestational periods—RPI-P3, -P6 and -P9’, Phys. Med. Biol.
52(23), 7023-7044.

Zhang, D., Padole, A., Li, X., Singh, S., Khawaja, R. D. A., Lira, D., Liu, T.,
Shi, J. Q., Otrakji, A., Kalra, M. K., Xu, X. G. & Liu, B. (2014), ‘In vitro dose
measurements in a human cadaver with abdomen /pelvis CT scans’, Med. Phys. .
(accepted).

Zhang, J., Na, Y. H., Caracappa, P. F. & G, X. X. (2009), ‘RPI-AM and RPI-
AF, a pair of mesh-based, size-adjustable adult male and female computational
phantoms using ICRP-89 parameters and their calculations for organ doses from
monoenergetic photon beams’, Phys. Med. Biol. 54(19), 5885-5908.

APPENDIX A
VERIFICATION OF ARCHER WITH MCNP

A.1 73 kg RPI adult male phantom

Table A.1: Verification of ARCHER with MCNP using 73 kg RPI adult
male phantom.

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

colon wall 7.20e-08 6.16e-04 7.21e-08 8.91e-04 0.20%
lungs (left & right) 7.94e-08 3.39e-04 7.97e-08 4.75e-04 0.28%
stomach wall 7.23e-08 8.27e-04 7.25e-08 1.29¢-03 0.19%
breast (left & right) 6.93e-08 1.59e-03 6.90e-08 2.84e-03 -0.45%
gonads for male 1.16e-07 1.50e-03 1.16e-07 2.21e-03 0.13%
urinary bladder wall 6.06e-08 1.23e-03 6.07e-08 2.29¢-03 0.13%
esophagus 8.41e-08 1.23e-03 8.42e-08 2.19¢-03 0.11%
liver 8.35e-08 4.68e-04 8.35e-08 5.09e-04 0.08%
thyroid 1.42e-07 1.59e-03 1.40e-07 2.56e-03 -0.80%
brain 8.96e-08 5.28¢-04 8.97e-08 5.67e-04 0.16%
salivary - glands - (left &y o3 o7 8 620-04 1.03e-07 1.40-03 0.21%
right)

skin 9.17e-08 9.18¢-05 9.19e-08 2.33e-04 0.26%
adrenals 7.93e-08 2.20e-03 7.95e-08 4.00e-03 0.26%
extrathoracic region 8.78¢-08 2.01e-03 8.81e-08 3.07e-03 0.37%
gall bladder wall 6.21e-08 1.95e-03 6.22e-08 4.65¢-03 0.07%
heart wall 7.48¢-08 6.81e-04 7.50e-08 9.33e-04 0.24%
kidneys (left & right) 8.00e-08 8.32e-04 8.01e-08 1.04e-03 0.12%
lymphatic nodes 6.72e-08 6.80e-04 6.72¢e-08 1.36e-03 0.03%
muscle 8.64e-08 1.13e-04 8.65e-08 1.27e-04 0.16%

102

Table A.1: Continued.

103

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

oral mucosa 8.77e-08 1.66e-03 8.80e-08 2.62e-03 0.39%
pancreas 6.61e-08 1.24e-03 6.62e-08 1.58¢-03 0.04%
prostate 7.14e-08 2.55e-03 7.08e-08 3.98e-03 -0.87%
small intestine 7.05e-08 6.33e-04 7.05e-08 7.08e-04 -0.08%
spleen 8.23e-08 1.12¢-03 8.25e-08 1.44e-03 0.17%
thymus 7.94e-08 1.76e-03 7.96e-08 2.89e-03 0.28%
spongiosa combined 1.09e-07 1.85e-04 1.09e-07 2.34e-04 -0.17%
Ei‘iguw cavity COM= 6 60008 6.150-04 6.63¢-08 1.08¢-03 0.36%
cortical bone combined 2.90e-07 1.79e-04 2.89¢-07 2.06e-04 -0.48%
all bone combined 1.83e-07 1.59e-04 1.82e-07 1.70e-04 -0.37%
adipose tissue 6.87e-08 1.31e-04 6.88¢-08 1.70e-04 0.14%
2;?;1”1’ upper half, spon-) g9 08 1.176-03 4.91c-08 1.560-03 -0.27%
clavicles, spongiosa 5.63e-08 1.14e-03 5.61e-08 2.04e-03 -0.32%
cranium, spongiosa 7.51e-08 4.58e-04 7.49e-08 6.64e-04 -0.37%
iﬁfa’ upper half, Spon- 5 g5 08 6.20e-04 5.826-08 8.060-04 -0.51%
mandible, spongiosa 8.01e-08 9.92e-04 7.96e-08 1.51e-03 -0.59%
pelvis, spongiosa 4.91e-08 5.79e-04 4.88e-08 7.38¢-04 -0.55%
ribs, spongiosa 6.40e-08 3.72¢-04 6.37¢-08 6.23e-04 -0.55%
scapulae, spongiosa 5.07e-08 9.61e-04 5.05e-08 1.29¢-03 -0.52%
cervical spine, spongiosa 8.51e-08 9.54e-04 8.50e-08 1.56e-03 -0.14%
thoracic spine, spongiosa 6.00e-08 7.09e-04 5.98¢-08 9.59¢-04 -0.38%
lumbar spine, spongiosa 4.86e-08 8.78e¢-04 4.85e-08 1.12e-03 -0.37%
sacrum, spongiosa 5.48e-08 1.03e-03 5.48e-08 1.42¢-03 -0.12%
sternum, spongiosa 8.39¢-08 1.06e-03 8.37¢-08 1.80e-03 -0.15%

104

Table A.1: Continued.

MCNP ARCHER difference
organ
dose RSD dose RSD (%]
all, spongiosa 5.93e-08 2.19¢-04 5.91e-08 2.89¢-04 -0.43%

A.2 142 kg RPI adult male phantom

Table A.2: Verification of ARCHER with MCNP using 142 kg RPI adult
male phantom.

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

colon wall 3.21e-08 9.53e-04 3.20e-08 1.35e-03 -0.30%
lungs (left & right) 5.86e-08 4.03e-04 5.87e-08 5.57e-04 0.09%
stomach wall 3.54e-08 1.22e-03 3.54e-08 1.86e-03 -0.08%
breast (left & right) 5.41e-08 1.77e-03 5.46e-08 3.22e-03 0.95%
gonads for male 9.40e-08 1.68e-03 9.44e-08 2.46e-03 0.44%
urinary bladder wall 2.78¢-08 1.85e-03 2.77e-08 3.41e-03 -0.45%
esophagus 7.38¢-08 1.32¢-03 7.38e-08 2.35e-03 -0.02%
liver 4.49e-08 6.52e-04 4.50e-08 7.02e-04 0.17%
thyroid 1.31e-07 1.68e-03 1.30e-07 2.67e-03 -0.92%
brain 8.86e-08 5.11e-04 8.88e-08 5.71e-04 0.23%
salivary glands - (left &y g0, 7 591004 101607 143003 0.48%
right)

skin 8.05e-08 8.59e-05 8.08e-08 2.09e-04 0.35%
adrenals 5.79e-08 2.74e-03 5.75e-08 4.74e-03 -0.70%
extrathoracic region 8.34e-08 2.05e-03 8.38¢-08 3.16e-03 0.48%
gall bladder wall 2.93e-08 2.94e-03 2.96e-08 6.78¢-03 1.02%
heart wall 5.20e-08 8.17e-04 5.20e-08 1.12e-03 -0.09%
kidneys (left & right) 4.48e-08 1.19e-03 4.47e-08 1.43e-03 -0.17%

lymphatic nodes 4.90e-08 7.76e-04 4.90e-08 1.59¢-03 0.02%

Table A.2: Continued.

105

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

muscle 6.29¢-08 1.35e-04 6.30e-08 1.52e-04 0.17%
oral mucosa 8.94e-08 1.67e-03 8.96e-08 2.59¢-03 0.21%
pancreas 2.72e-08 2.01e-03 2.70e-08 2.52e-03 -0.49%
prostate 3.61e-08 3.65e-03 3.55e-08 5.63e-03 -1.67%
small intestine 2.66e-08 1.06e-03 2.65e-08 1.16e-03 -0.27%
spleen 5.45e-08 1.44e-03 5.45e-08 1.80e-03 -0.10%
thymus 6.12e-08 2.02e-03 6.12e-08 3.31e-03 0.02%
spongiosa combined 8.52e-08 2.08e-04 8.52e-08 2.64e-04 0.08%
rblicelguary Cavty COM= 507008 7.12-04 5.08¢-08 1.23¢-03 0.06%
cortical bone combined 2.34e-07 2.01e-04 2.35e-07 2.29e-04 0.15%
all bone combined 1.46e-07 1.79e-04 1.46e-07 1.90e-04 0.12%
adipose tissue 5.42e-08 9.79e-05 5.44e-08 1.07e-04 0.34%
}gliligl:ﬁ’ upper hall, spon- 5 o7 08 1.120-03 3.860-08 1.51e-03 -0.40%
clavicles, spongiosa 4.83e-08 1.17¢-03 4.82e-08 2.18¢-03 -0.13%
cranium, spongiosa 7.42e-08 4.54e-04 7.42e-08 6.69¢-04 0.01%
gﬁ;‘;a’ upper halt, SpOI- 351 08 843004 3.21e-08 1.07¢-03 -0.15%
mandible, spongiosa 7.81e-08 9.84e-04 7.81e-08 1.51e-03 -0.06%
pelvis, spongiosa 2.46e-08 8.15e-04 2.45e-08 1.03e-03 -0.55%
ribs, spongiosa 5.00e-08 4.22e-04 5.00e-08 7.00e-04 -0.03%
scapulae, spongiosa 4.26e-08 1.04e-03 4.25e-08 1.40e-03 -0.17%
cervical spine, spongiosa 7.71e-08 9.95e-04 7.72e-08 1.63e-03 0.09%
thoracic spine, spongiosa 4.75e-08 7.92e-04 4.74e-08 1.07e-03 -0.26%
lumbar spine, spongiosa 2.26e-08 1.28e-03 2.24e-08 1.62e-03 -0.64%
sacrum, spongiosa 2.90e-08 1.42¢-03 2.91e-08 1.95e-03 0.17%

Table A.2: Continued.

106

MCNP ARCHER difference
organ
dose RSD dose RSD (%]
sternum, spongiosa 6.20e-08 1.27¢-03 6.18¢-08 2.10e-03 -0.27%
all, spongiosa 4.24e-08 2.50e-04 4.23e-08 3.33e-04 -0.16%

A.3 122 kg RPI adult female phantom

Table A.3: Verification of ARCHER with MCNP using 122 kg RPI adult

female phantom.

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

colon wall 3.60e-08 9.46e-04 3.59¢-08 1.34e-03 -0.19%
lungs (left & right) 6.75e-08 4.31e-04 6.75e-08 6.03e-04 0.00%
stomach wall 4.00e-08 1.26e-03 4.00e-08 1.89¢-03 -0.16%
breast (left & right) 5.50e-08 7.43e-04 5.52e-08 9.46e-04 0.42%
ovaries for female 2.96e-08 4.20e-03 2.98e-08 7.39e-03 0.72%
urinary bladder wall 3.53e-08 1.80e-03 3.52e-08 3.46e-03 -0.10%
esophagus 8.18¢-08 1.37e-03 8.20e-08 2.46e-03 0.16%
liver 5.40e-08 6.80e-04 5.41e-08 7.39e-04 0.18%
thyroid 1.37e-07 1.78e-03 1.36e-07 2.92e-03 -1.02%
brain 9.82¢-08 5.32e-04 9.85e-08 5.90e-04 0.23%
salivary - glands (left &y 560 07 10303 1.07e:07 1.61e-03 0.31%
right)

skin 8.81e-08 8.99¢-05 8.85e-08 2.12¢-04 0.37%
adrenals 6.00e-08 2.90e-03 6.03e-08 4.92e-03 0.40%
extrathoracic region 1.20e-07 1.97e-03 1.20e-07 3.06e-03 0.12%
gall bladder wall 3.34e-08 3.15e-03 3.36e-08 7.38¢-03 0.49%
heart wall 5.89e-08 8.90e-04 5.87e-08 1.25e-03 -0.26%
kidneys (left & right) 4.65e-08 1.27e-03 4.65e-08 1.53e-03 -0.00%

Table A.3: Continued.

107

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

lymphatic nodes 5.81e-08 9.91e-04 5.79e-08 1.97e-03 -0.27%
muscle 7.12e-08 1.52e-04 7.13e-08 1.76e-04 0.13%
oral mucosa 1.16e-07 2.47e-03 1.15e-07 4.21e-03 -0.55%
pancreas 2.86e-08 2.20e-03 2.86e-08 2.75e-03 -0.24%
uterus 2.43e-08 2.60e-03 2.42e-08 3.47e-03 -0.38%
small intestine 2.93e-08 1.11e-03 2.92e-08 1.22e-03 -0.41%
spleen 6.71e-08 1.41e-03 6.73e-08 1.78e-03 0.31%
thymus 6.78e-08 2.15e-03 6.77e-08 3.63e-03 -0.18%
spongiosa combined 9.79¢-08 2.32e-04 9.76e-08 3.06e-04 -0.23%
Ib?fl(iguary cavity COM- 55008 6.63¢-04 5.91e-08 1.18¢-03 -0.16%
cortical bone combined 2.84e-07 2.11e-04 2.86e-07 2.49e-04 0.85%
all bone combined 1.79¢-07 1.94e-04 1.79e-07 2.11e-04 -0.43%
adipose tissue 5.94e-08 9.85e-05 5.96e-08 1.05e-04 0.24%
ggéfﬂ’ upper hall, spon-y o7 03 1.390-03 424008 1.86¢-03 -0.83%
clavicles, spongiosa 5.53e-08 1.22e-03 5.47e-08 2.41e-03 -1.03%
cranium, spongiosa 8.35e-08 4.75e-04 8.32¢-08 7.04e-04 -0.36%
;‘;;(;ra’ upper half, spon- 5 510 08 1.07¢-03 3.47¢-08 1.44e-03 -0.96%
mandible, spongiosa 9.49¢-08 1.14e-03 9.40e-08 1.95¢-03 -0.98%
pelvis, spongiosa 3.02¢-08 8.71e-04 2.99¢-08 1.15e-03 -0.86%
ribs, spongiosa 5.97e-08 4.63e-04 5.94e-08 8.73e-04 -0.60%
scapulae, spongiosa 4.74e-08 1.24e-03 4.70e-08 1.79¢-03 -0.74%
cervical spine, spongiosa 9.03e-08 9.97¢-04 9.03e-08 1.64e-03 -0.05%
thoracic spine, spongiosa 5.14e-08 8.41e-04 5.11e-08 1.19e-03 -0.55%
lumbar spine, spongiosa 2.67e-08 1.30e-03 2.65e-08 1.68e-03 -0.94%

108

Table A.3: Continued.

MCNP ARCHER difference
organ
dose RSD dose RSD (%]
sacrum, spongiosa 3.87¢-08 1.52¢-03 3.87¢-08 2.06e-03 0.08%
sternum, spongiosa 6.93e-08 1.34e-03 6.89¢-08 2.27¢-03 -0.61%
all, spongiosa 5.01e-08 2.74e-04 4.98e-08 3.81e-04 -0.58%

A.4 RPI 9-month pregnant female phantom

Table A.4: Verification of ARCHER with MCNP using RPI 9-month
pregnant female phantom.

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

brain 7.50e-08 6.01e-04 7.51e-08 6.69¢-04 0.19%
eyeballs 1.01e-07 1.91e-03 1.01e-07 3.43e-03 -0.24%
eye lens 1.13e-07 5.53e-03 1.11e-07 1.74e-02 -1.92%
thyroid 1.35e-07 1.67e-03 1.34e-07 2.90e-03 -0.46%
trachea 8.43e-08 1.97e-03 8.35e-08 4.72e-03 -0.88%
thymus 8.48e-08 1.91e-03 8.54e-08 3.26e-03 0.71%
lungs 7.73e-08 3.81e-04 7.74e-08 5.56e-04 0.14%
heart wall 7.77e-08 8.06e-04 7.78e-08 1.11e-03 0.12%
esophagus wall 7.29e-08 1.40e-03 7.30e-08 2.60e-03 0.18%
breasts 8.84e-08 4.87e-04 8.85e-08 6.02¢-04 0.19%
stomach wall 6.33e-08 9.95e-04 6.35e-08 1.51e-03 0.27%
liver 7.25e-08 5.99e-04 7.25e-08 6.52e-04 -0.06%
gallbladder wall 5.88¢-08 2.17e-03 5.78e-08 5.58e-03 -1.68%
pancreas 5.33e-08 1.54e-03 5.30e-08 2.00e-03 -0.49%
spleen 7.75e-08 1.30e-03 7.77e-08 1.66e-03 0.19%
kidneys 6.99e-08 9.29e-04 6.99e-08 1.20e-03 0.10%

adrenals 6.39e-08 2.33e-03 6.41e-08 4.42¢-03 0.36%

Table A.4: Continued.

109

MCNP ARCHER difference
organ
dose RSD dose RSD (%]

small intestine wall and 5 010 08 6.07e.04 5.200-08 7.72¢-04 -0.11%
contents

large intestine wall 5.58e-08 6.46e-04 5.58e-08 9.98e-04 -0.04%
large intestine contents 5.74e-08 7.57e-04 5.72¢e-08 1.10e-03 -0.25%
ovaries 3.97e-08 3.55e-03 3.98e-08 6.38e-03 0.05%
bladder wall 6.13e-08 1.33e-03 6.11e-08 2.63e-03 -0.40%
uterine wall 6.81e-08 3.51e-04 6.82¢-08 5.29¢-04 0.13%
uterine contents 5.75e-08 3.85e-04 5.74e-08 4.19e-04 -0.05%
placenta 7.67e-08 6.23e-04 7.68e-08 7.67e-04 0.17%
fetal soft tissue 5.91e-08 4.53e-04 5.91e-08 4.99¢-04 -0.08%
fetal skeleton 1.71e-07 6.82e-04 1.70e-07 8.40e-04 -0.75%
fetal brain 3.98e-08 1.30e-03 3.96e-08 1.53e-03 -0.56%
skeleton 2.55e-07 1.64e-04 2.54e-07 1.72e-04 -0.58%
skin 8.80e-08 9.50e-05 8.82e-08 2.68e-04 0.23%
remainder 7.70e-08 9.89e-05 7.71e-08 1.09e-04 0.15%
fetus total 5.68¢-08 4.44e-04 5.67e-08 4.85e-04 -0.12%

APPENDIX B
LIST OF JOURNAL AND CONFERENCE PAPERS

My doctoral research at RPI has covered a wide spectrum of topics. This thesis is

related to the following peer-reviewed journal and conference papers.

B.1 Journals

Liu, T., Du, X., Su, L., Ji, W., Carothers, C. D., Shephard, M. S., Liu, B., Kalra,
M. K., Brown, F. B., Fitzgerald, P. F. & Xu, X. G. (2014), ‘ARCHER-CT, an
extremely fast Monte Carlo code for patient-specific ct dose calculations using

Nvidia GPU and Intel coprocessor technologies: part I — software development

and testing’, Phys. Med. Biol. (submitted).

Zhang, D., Padole, A., Li, X., Singh, S., Khawaja, R. D. A., Lira, D., Liu, T., Shi,
J. Q., Otrakji, A., Kalra, M. K., Xu, X. G. & Liu, B. (2014), ‘In vitro dose
measurements in a human cadaver with abdomen/pelvis CT scans’, Med. Phys.

(accepted).

Su, L., Yang, Y., Bednarz, B., Sterpin, E., Du, X., Liu, T., Ji, W. & Xu, X. G.
(2014), ‘ARCHER-RT, A photon-electron coupled Monte Carlo dose computing

engine for GPU: software development of and application to helical tomother-

apy’, Med. Phys. 41(7), 071709.

B.2 Conference Abstracts and Papers

Liu, T., Su, L., Du, X., Lin, H., Zieb, K., Ji, W., Caracappa, P. & Xu, X. G. (2014),
Parallel Monte Carlo methods for heterogeneous hardware computer systems
using GPUs and coprocessors: recent development of ARCHER code, in ‘18th
Topical Meeting of the Radiation Protection and Shielding Division (RPSD) of

the American Nuclear Society’, Knoxville, TN.

Liu, T., Su, L., Du, X., Caracappa, P. F. & Xu, X. G. (2014), Comparison of
accuracy and speed of ARCHER with MCNP for organ dose calculations from

110

111

external photon beams under standard irradiation geometries, in ‘59th Annual

Meeting of the Health Physics Society’, Baltimore, MD.

Liu, T., Du, X., Su, L., Ji, W. & Xu, X. G. (2014), Development of ARCHER-CT,
a fast Monte Carlo code for patient-specific CT dose calculations using Nvidia

GPU and Intel coprocessor technologies, in ‘GPU Technology Conference 2014,
San Jose, CA.

Liu, T., Du, X., Su, L., Gao, Y., Ji, W., Zhang, D., Shi, J. Q., Liu, B., Kalra, M.
K. & Xu, X. G. (2014), Monte Carlo CT dose calculation: a comparison be-
tween experiment and simulation using ARCHER-CT, in ‘AAPM 56th Annual
Meeting & Exhibition’, Austin, TX.

Liu, T., Du, X., Su, L., Gao, Y., Ji, W., Zhang, D., Shi, J. Q., Liu, B., Kalra,
M. K. & Xu, X. G. (2014), Testing of ARCHER-CT, a fast Monte Carlo Code

for CT dose calculation: experiment versus simulation, in ‘American Nuclear

Society (ANS) 2014 Annual Meeting’, Reno, NV.

Liu, T., Du, X., Ji, W., Xu, X. G. & Brown, F. B. (2013), A comparative study
of history-based versus vectorized Monte Carlo methods in the GPU/CUDA
environment for a simple neutron eigenvalue problem, in ‘Joint International
Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA

& MC 2013)’, Paris, France.

Su L, Du X, Liu, T. & Xu, X. G. (2013), GPU-accelerated Monte Carlo electron
transport methods: development and application for radiation dose calculations
using six GPU cards, in ‘Joint International Conference on Supercomputing in

Nuclear Applications and Monte Carlo (SNA & MC 2013)’, Paris, France.

Xu, X. G., Liu, T., Su, L., Du, X., Riblett, M. J., Ji, W., Gu, D., Carothers, C. D.,
Shephard, M. S., Brown, F. B., Kalra, M. K. & Liu, B. (2013), ARCHER, a new
Monte Carlo software tool for emerging heterogeneous computing environments,

in ‘Joint International Conference on Supercomputing in Nuclear Applications

and Monte Carlo (SNA & MC 2013)’, Paris, France.

112

Liu, T., Ji, W. & Xu, X. G. (2013), Development of GPU-based Monte Carlo code
for fast CT imaging dose calculation on CUDA Fermi architecture, in ‘Inter-
national Conference on Mathematics and Computational Methods Applied to

Nuclear Science and Engineering (M&C 13)’, Sun Valley, ID.

Liu, T., Xu, X. G. & Carothers, C. D. (2013), Comparison of two accelerators for
Monte Carlo radiation transport calculations, NVIDIA Tesla M2090 GPU and
Intel Xeon Phi 5110p coprocessor: a case study for X-ray CT imaging dose

calculation, in ‘Joint International Conference on Supercomputing in Nuclear

Applications and Monte Carlo (SNA & MC 2013)’, Paris, France.

Du, X., Liu, T., Su, L., Riblett, M. & Xu, X. G. (2013), A hardware accelerator
based fast Monte Carlo code for radiation dosimetry: software design and pre-
liminary results, in ‘AAPM 55th Annual Meeting & Exhibition’, Indianapolis,
IN.

Liu, T., Du, X. & Xu, X. G. (2013), Affordable supercomputer-based Monte Carlo
CT dose calculations: a hardware comparison between Nvidia M2090 GPU
and Intel Xeon Phi 5110p coprocessor, in ‘AAPM 55th Annual Meeting &
Exhibition’, Indianapolis, IN.

Riblett, M. J., Liu, T., Ji, W. & Xu, X. G. (2013), Use of hardware accelerators for
Monte Carlo-based neutron radiation transport: a preliminary study, in ‘58th

Annual Meeting of the Health Physics Society’, Madison, WI.

Su, L., Du, X., Liu, T. & Xu, X. G. (2013), Fast Monte Carlo electron-photon trans-
port code using hardware accelerators: preliminary results for brachytherapy
and radionuclide therapy cases, in ‘AAPM 55th Annual Meeting & Exhibition’,
Indianapolis, IN.

Su, L., Du, X., Liu, T. & Xu, X. G. (2013), A fast Monte Carlo electron transport
code for dose calculations using the GPU accelerator, in ‘58th Annual Meeting

of the Health Physics Society’, Madison, WI.

113

Xu, X. G., Liu, T., Su, L., Du, X., Riblett, M., Ji, W. & Brown, F. B. (2013), ‘An
update of ARCHER, a Monte Carlo radiation transport software testbed for
emerging hardware such as GPUs’, Trans. Am. Nucl. Soc. 108, 433-434.

Liu, T., Ding, A., Ji, W., Xu, X. G., Carothers, C. D. & Brown, F. B. (2012), A
Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU

system and CUDA environment, in ‘International Topical Meeting on Advances

in Reactor Physics (PHYSOR 2012)’, Knoxville, TN.

Liu, T., Ding, A. & Xu, X. G. (2012), ‘GPU-based Monte Carlo methods for ac-
celerating radiographic and CT imaging dose calculations: feasibility and scal-

ability’, Med. Phys. 39, 3876.

Liu, T., Ding, A. & Xu, X. G. (2012), ‘Accelerated Monte Carlo methods for photon
dosimetry using a dual-GPU system and CUDA’, Med. Phys. 39, 3818.

Vazquez, J., Ding, A., Liu, T., Su, L., Gao, Y., Mille, M., Caracappa, P. F. &
Xu, X. G. (2012), Current research pursuits the Rensselaer Radiation Measure-
ment and Dosimetry Group, in ‘The American Nuclear Society 2012 Student
Conference’, Las Vegas, NV.

Xu, X. G., Su, L., Liu, T. & Ding, A. (2012), GPU-based Monte Carlo method
for medical physics applications: preliminary results for X-ray and proton ap-
plications, in “World Congress on Medical Physics and Biomedical Engineering

(WC 2012)’, Beijing, China.

Su, L., Liu, T., Ding, A. & Xu, X. G. (2012), GPU/CUDA-based Monte Carlo
methods for radiation protection dose calculations involving X-ray and proton

sources, in ‘57th Annual Meeting of the Health Physics Society’, Sacramento,
CA.

Su, L., Liu, T., Ding, A. & Xu, X. G. (2012), ‘A GPU/CUDA based Monte Carlo
code for proton transport: preliminary results of proton depth dose in water’,

Med. Phys. 39, 3945.

114

Liu, T., Su, L., Ding, A., Ji, W., Carothers, C. D. & Xu, X. G. (2012), ‘GPU/CUDA-
ready parallel Monte Carlo codes for reactor analysis and other applications’,

Trans. Am. Nucl. Soc. 106, 378-379.

Ding, A., Liu, T., Liang, C., Ji, W., Shepard, M. S., Xu, X. G. & Brown, F. B.
(2011), Evaluation of speedup of Monte Carlo calculations of simple reactor
physics problems coded for the GPU/CUDA environment, in ‘International
Conference on Mathematics and Computational Methods Applied to Nuclear
Science and Engineering (M&C 11)’, Rio de Janeiro, Brazil.

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	INTRODUCTION
	Background
	Clinical Significance of CT Dose Management
	Monte Carlo Methods
	New Parallel Computing Paradigm
	Advantage of Hardware Accelerators
	GPU Architecture and Programming Model
	Coprocessor Architecture and Programming Model

	Literature Review
	Objectives

	MATERIALS AND METHODS
	Overview
	Hardware Specifications
	Monte Carlo Methods
	Theory
	Radiation Transport Simulation in ARCHER for CT

	Radiation Dose Calculations
	Dose Tallies in ARCHER for CT
	Conversion of Simulated Dose to Absolute Dose

	CT Scanner and Patient Modeling
	MDCT Scanner Model
	Anthropomorphic Phantoms
	Patient-Specific Phantoms

	Software Development
	General Flowchart of ARCHER for CT
	Development of ARCHERCPU for CT
	Development of ARCHERGPU for CT
	Development of ARCHERCOP for CT
	Development Tools
	Fair Comparison Considerations

	Verification and Validation
	Terminology
	Verification of ARCHER for CT with MCNPX
	Validation of ARCHER for CT with Experiment

	Performance Analysis
	Computing Efficiency
	Performance Comparison of Different Codes
	Performance Comparison with Contemporary Study

	Energy Efficiency
	Cost Effectiveness
	Profiling

	Clinical Applications

	RESULTS AND DISCUSSION
	Verification and Validation
	Verification of ARCHER for CT with MCNPX
	Validation of ARCHER for CT with Experiment

	Performance Analysis
	Computing Efficiency
	Performance Comparison of Different Codes
	Performance Comparison with Contemporary Study

	Energy Efficiency
	Cost Effectiveness
	Profiling

	Clinical Applications
	Long-term Development of ARCHER for CT

	CONCLUSIONS
	Summary
	Future Work

	REFERENCES
	VERIFICATION OF ARCHER WITH MCNP
	73 kg RPI adult male phantom
	142 kg RPI adult male phantom
	122 kg RPI adult female phantom
	RPI 9-month pregnant female phantom

	LIST OF JOURNAL AND CONFERENCE PAPERS
	Journals
	Conference Abstracts and Papers

