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ABSTRACT

Monte Carlo methods are the gold standard in radiation dose calculations with het-

erogeneous patient geometries and complicated irradiation conditions such as multi-

detector CT scan. The long computation time has historically prevented them from

becoming a routine clinic tool. The emerging hardware accelerators have created op-

portunities to speed up the computations significantly. They have the advantages of

high computing power and high energy efficiency that are particularly suited for per-

forming parallel tasks. This research represents our efforts to understand and utilize

such technology in the context of radiation dosimetry, and is focused on developing

and testing a new parallel Monte Carlo package, named ARCHER, for patient-

specific CT dose calculations using three types of hardware platforms, including

the conventional multi-core CPU and two most competitive hardware accelerators

— the Nvidia’s graphics processing unit (GPU) and Intel’s Xeon Phi coprocessor.

ARCHER includes three variants, ARCHERCPU, ARCHERGPU and ARCHERCOP,

which are tested on a 6-core Intel Xeon X5650 CPU, three Nvidia GPUs (M2090,

K20, K40), and an Intel Xeon Phi 5110p coprocessor, respectively. ARCHER has

a built-in model of the GE LightSpeed Pro 16 CT scanner and a library of compu-

tational human phantoms that allow realistic scan protocols to be simulated. For a

fair code comparison, all the variants are carefully optimized and fine-tuned to their

specific hardware platforms. Important performance factors such as the accuracy,

computing efficiency, scalability and energy efficiency of the codes are investigated.

The accuracy tests include the benchmark of the Monte Carlo transport kernels

against the production Monte Carlo code MCNPX, and the benchmark of the sim-

ulation models against the experiment using a real human subject. In the first

test, ARCHER is in excellent agreement with MCNPX using the same geometries

and similar physics. In the second test, discrepancy up to 29% from the experi-

ment is observed, encouraging us to reinvestigate the simulation models such as the

CT scanner model and the algorithm to automatically generate the phantom from

CT images. In the computing efficiency test, compared to the parallel CPU code,

xi



ARCHERGPU is found to be faster by a factor of 5.40 ∼ 10.89, while ARCHERCOP

is by a factor of 3.37. ARCHERGPU demonstrates good scalability when the GPU

stream is implemented. The GPU platform is found to be the most energy-efficient,

consuming less amount of energy than the CPU by a factor of 3.68 ∼ 8.01, while

the coprocessor is better than the CPU by a factor of 2.24. Meanwhile, both the

GPU and coprocessor platforms are found to be more cost effective than the CPU.

Furthermore, ARCHERGPU is applied to a clinical case to compute imaging dose

distributions in a patient-specific abdominal CT scan and exhibits good computing

efficiency. This research shows that both the GPU and the coprocessor technology

can effectively boost the performance of Monte Carlo simulations, that the GPU

takes the clear lead, and that the developed code ARCHER is an important step

toward patient-specific CT dose calculations.
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CHAPTER 1

INTRODUCTION

“By an incredible coincidence, Gamow and Edward Condon, who had

discovered simultaneously and independently the explanation of radioac-

tivity (one in Russia, the other in this country), came to spend the the

last ten years of their lives within a hundred yards of each other in Boul-

der.”

—Ulam, Stanislaw

1.1 Background

Clinical use of X-ray Computed Tomography (CT) — an important diagnos-

tic imaging tool — has continued to grow on a yearly basis. This trend has led

to a significant increase in the radiation dose delivered to the patient population,

giving rise to a mounting concern over the public health. The radiology community

has called for the development of new tools to more accurately quantify and report

patient-specific dose for CT scan procedures. The Monte Carlo methods are one of

the ideal candidates, being in general deemed as the gold standard in radiation dose

calculations due to its high accuracy. It allows exact modelling of three-dimensional,

heterogeneous geometries, includes precise mathematical models for radiation parti-

cle interactions with matter, and adopts a cross-section representation of the physics

Portions of this chapter previously appeared as: Liu, T., Ji, W. & Xu, X. G. (2013), Devel-
opment of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi
architecture, in ‘International Conference on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013)’, Sun Valley, ID, pp. 1199-1210.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).

1
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that is as accurate as experiments permit (Brown & Martin 1984). Nonetheless, us-

ing Monte Carlo methods, the computation time to obtain results with acceptable

statistical uncertainties is usually very long, making a routine use in a clinical setting

impractical. The computation can be effectively accelerated by developing parallel

Monte Carlo codes. Traditional parallel codes execute on the systems composed of

central processing units (CPU). Recent advance in High Performance Computing

(HPC) industry has introduced new paradigms for parallel computing — the hard-

ware accelerators such as the graphics processing unit (GPU) and the coprocessor.

They have the distinctive advantage of high computing power and high energy ef-

ficiency. Existing production codes, however, cannot be directly run on them. To

harness this emerging technology for accurate and fast CT dose calculations, it is

necessary to redevelop the Monte Carlo code and optimize it to the unique GPU or

coprocessor architecture (Liu et al. 2013). This is the central task of this doctoral

research.

1.2 Clinical Significance of CT Dose Management

Since its inception some 40 years ago, computed tomography (CT) has become

one of the most widely used medical imaging tools. The number of CT scans per-

formed each year has been steadily increasing by a factor of 10% to 15% (Amis Jr

et al. 2007, Brenner & Hall 2007, NCRP 2009, McCollough et al. 2008). CT scans

now account for about one in five radiation-based imaging procedures and these

scans are responsible for nearly 50% of the radiation exposure from medical imaging

in the U.S. (NCRP 2009, Stern 2007, Stern et al. 2000). Over the years, CT has

played a significant role in cancer treatment with three-dimensional anatomical data

routinely incorporated into treatment planning for radiation oncology. From 1995

to 2007, the use of CT scans in emergency department visits has increased by ap-

proximately 6-fold in the U.S. (Larson et al. 2011). Associated with this popularity

is the radiation dose level to the population — the U.S. annual per capita dose by

CT scans has increased from 0.03 mSv to 1.47 mSv during that time (NCRP 2009).

For years, controversy about the potential risk of induced carcinogenic effects

has surrounded clinical practices involving X-ray radiography and CT as is men-
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tioned in Brenner (2002), Brenner & Hall (2007) and National Research Council

(2005, pp. 65–90). The risk to an individual patient of developing a radiation-related

cancer from any single CT procedure is estimated to be relatively small according to

data derived from nuclear workers and atomic bomb survivors (Brenner & Hall 2007,

NCRP 2009). However, there is uncertainty in applying these high-dose and high-

dose rate radiobiological data to medical radiation exposures such as CT. Recent

epidemiological studies on CT patients have provided more relevant information.

One study reported by Berrington de González & Darby (2004) hypothesized that

medical exposures between 1991 and 1996 might be responsible for approximately

1% of all cancer incidences in the United States during that period. The issue of

radiation risk is of even greater importance for pregnant and pediatric patients,

since younger patients are known to be considerably more radiosensitive. A study

by Pearce et al. (2012) found that a dose of 50 mGy from CT tripled the risk of

leukaemia and a dose of 60 mGy tripled the risk of brain cancer among the 178,604

young patients who received CT scans from 1985 ∼ 2002 from 81 hospitals in Great

Britain. The increased risk to young patients was also observed in a study by Math-

ews et al. (2013) that analyzed 10.9 million Australian patients who were between

0 to 19 years old.

The “As Low As Reasonably Achievable” (ALARA) principle is widely adopted

in industrial and medical radiation protection as a prudent measure. To address the

increasing trend in CT exposure, professional societies have implemented a num-

ber of aggressive initiatives (Amis Jr et al. 2007, Goske et al. 2008, McCollough

et al. 2008, ICRP 2007, NCRP 2009). In 2011, a workshop cosponsored by the

National Institute of Biomedical Imaging and Bioengineering (NIBIB) was held to

identify possible research steps towards reducing the average patient CT exposure

to sub-mSv levels and, subsequently, a special U01 research program was launched

by NIBIB in 2012 (NIH. 2012).

Current CT scanners only report CT Dose Index (CTDI) values and dose

length product (DLP) that are based on data pre-measured in tissue-equivalent

cylinders (McCollough et al. 2008). Recent studies have concluded that CTDIs and

DLPs are poor surrogates for patient CT doses (Li et al. 2010, 2011). In an attempt
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to move away from the CTDI concept toward patient-relevant CT dose reporting,

AAPM recently designed Size-Specific Dose Estimates (SSDE) (Boone et al. 2011).

The use of the unit “mSv” in the NIBIB’s research initiative implies the use of

the “effective dose” that was originally defined by the ICRP for estimating whole-

body stochastic risk to workers. In the ICRP radiation protection dose system,

estimates of radiation levels are based on the absorbed dose to radiosensitive organs

(instead of “dose at a point” in the body) for which radiation risk information exists

(Health Physics Society. 2010, ICRP 2007). Correct uses of “effective dose” for CT

imaging have been discussed (see for examples, McCollough & Schueler (2000),

McNitt-Gray (2002), Brenner & Huda (2008), Xu et al. (2008)). The capability of

patient-specific organ dose assessment for X-ray based imaging procedures has been

proposed before (Li et al. 2010, 2011) and is clearly a trend in radiology research.

Several software tools are available for CT organ dose and effective dose es-

timate, such as ImPACT (Lewis 2005) and VirtualDose (Ding et al. 2012b, Vir-

tual Phantoms Inc. 2013). In principle, they can retrospectively re-construct organ

doses based on pre-calculated database using the population-averaged computa-

tional phantoms (Xu & Eckerma 2010, pp. 347–377). VirtualDose, for example,

utilizes an extensive organ dose database derived from time-consuming Monte Carlo

calculations for a library of patient phantoms representing pregnant and obese adult

patients as well as age-specific children (Virtual Phantoms Inc. 2013). These tools

cannot perform accurate, patient-specific dose calculations, and will be well com-

plemented by a code with the capability of efficient onsite Monte Carlo simulations

(Liu et al. 2014a), which is addressed in this research.

1.3 Monte Carlo Methods

In radiation transport, the Monte Carlo methods are a computational algo-

rithm that uses repeated random sampling to create the full genealogical histories

of particles, and obtains numerical estimate of certain quantities, such as flux or

fluence, that follow usually unknown probability distributions. The use of random

sampling dates back to 18th century (X-5 Monte Carlo Team 2003a). Buffon (1777)

posed and solved the Buffon’s needle problem, which asks the probability of a nee-
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dle landing on a line, given a floor marked with equidistant parallel lines. The

result can be used to experimentally estimate π. The problem was later extended

by Buffon and Laplace to the Buffon-Laplace needle problem (Arnow 1994), where

the texture of the floor was changed from parallel lines to grids, and the proba-

bility of a needle landing on any one line of the grid was sought. In early 1900s

Kelvin (1901) applied the random sampling to integral calculations in thermody-

namics. In 1930s Fermi (X-5 Monte Carlo Team 2003a) invented a form of Monte

Carlo method for neutron moderation study. During World War II, a team of em-

inent scientists, including Fermi, Ulam, von Neumann, Metropolis were working

at Los Alamos on the Manhattan Project to develop the first atomic bomb (X-5

Monte Carlo Team 2003a). Their joint effort for neutronic computation continued

after the war and was significantly encouraged by the advent of the first electronic

computer Electronic Numerical Integrator And Computer (ENIAC). The computa-

tionally expensive random sampling procedure previously deemed impractical was

now able to be put into practice, and was formally renamed as Monte Carlo method

(X-5 Monte Carlo Team 2003a, Metropolis 1987). In 1947, von Neumann devised

the first Monte Carlo program to solve neutron diffusion and multiplication prob-

lems on the ENIAC (X-5 Monte Carlo Team 2003a). Since then, the Monte Carlo

method and radiation transport code have rapidly evolved. From 1963 to today, a

general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled

neutron/photon/electron code called Monte Carlo N-Particle (MCNP) have been de-

veloped and upgraded by Los Alamos National Laboratory (X-5 Monte Carlo Team

2003a). Two renowned versions MCNP5 and MCNPX (Pelowitz 2008) have recently

been merged into MCNP6 (Pelowitz 2013b). The code has nowadays become an in-

ternational standard for a wide spectrum of applications (Selcow & McKinney 2000),

including radiation protection and dosimetry (Ding et al. 2012b), radiation shield-

ing (El-Guebaly 1997), radiography (Kardjilov et al. 2005), medical physics (Rogers

2006), nuclear criticality safety (Şeker & Çolak 2003), detector design and analysis

(Childress & Miller 2002), nuclear oil well logging (Serov et al. 1998), accelerator

target design (Overberg et al. 1999), fission and fusion reactor design (Wu 2006),

decontamination and decommissioning (Love et al. 1995), nuclear waste storage and
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disposal (Bayoumi et al. 2012), etc. Several other Monte Carlo codes also have large

user base among medical physics community. They are Geant4 (Agostinelli et al.

2003), EGSnrc (Kawrakow & Rogers 2000), Penelope (Baró et al. 1995) and Fluka

(Ferrari et al. 2005).

The Boltzmann transport equation can be solved by the Monte Carlo methods

and the deterministic methods (such as discrete ordinates, integral transport, finite

difference and finite element methods (Brown & Martin 1984)). The determinis-

tic methods have an inherent disadvantage that discretization of the “time-space-

angle-energy” phase space introduces approximations and computational systematic

errors. Besides, the problem geometry and the level of detail to describe the interac-

tions may be subject to a priori restrictions (Brown & Martin 1984). In contrast, the

Monte Carlo methods do not have such disadvantages. According to Brown & Mar-

tin (1984) and Lewis & Miller (1984, pp. 296–356), the Monte Carlo methods adopt

highly accurate mathematical models for particle interactions with matter, apply

continuous treatment of phase space that obviates discretization errors, and per-

mit exact modelling of three-dimensional, heterogeneous geometries. In this regard,

the Monte Carlo methods are considered the most general and powerful numerical

method available for solving radiation transport problems (Brown & Martin 1984).

The inherent statistical error of the result by Monte Carlo calculations can be

controlled to an arbitrarily low level by simulating sufficiently many particles. In

CT dosimetry study, for instance, it is a common practice to reduce the statistical

uncertainty to 1% and below, which is often more precise than the error of experi-

mentally obtained results. However, the computation time required to achieve this

level of precision can be very long. This constitutes the only drawback of Monte

Carlo methods (Brown & Martin 1984) and hinders them from being applied to

routine calculations beyond a benchmark tool alone.

The Monte Carlo computer programs in general are embarrassingly parallel,

meaning that the simulation task for individual particle history can often be carried

out independently of one another with very small amount of communication between

the tasks. Because of this attribute, the time-consuming sequential run can naturally

benefit from parallel computing techniques. In 1980s, the “vectorized” MC codes
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were elaborately designed by Brown & Martin (1984) and Bobrowicz et al. (1984) to

run specifically on the vector computers of the time. In 1990s, the Parallel Virtual

Machine (PVM) (Geist et al. 1994, pp. 93–135) and Message Passing Interface (MPI)

(Gropp 2002) enabled parallelism across dozens of processors. Since 2000s, the

invention of multi-core processors has allowed multiple threads to run concurrently

on different cores of the same processor. To take advantage of the large-scale High

Performance Computing (HPC) systems, many of the existing production codes have

been reworked using a combination of the threading and MPI paradigms (Brown

2011). In addition, use of the network-based distributed computing system such as

the clouding computing has also been reported lately (Wang et al. 2011, Miras et al.

2013).

1.4 New Parallel Computing Paradigm

In recent years, technical advances in the hardware architecture has intro-

duced an alternative approach — to implement the Monte Carlo calculations on the

heterogeneous computing systems. These systems feature the hardware accelerators

attached to the conventional central processing units (CPU) (Brown 2011). Exam-

ples are the graphics processing unit (GPU), coprocessor, Field-Programmable Gate

Array (FPGA), Cell processor, etc. They are playing an increasingly important role

in HPC community and have been adopted in a growing number of supercomputer

systems worldwide according to the statistics from the Top 500 list (Top500. 2013),

illustrated in figure 1.1. By November 2013, 53 out of the top 500 supercomputer

have been boosted by them; the No. 1 supercomputer Tianhe-2 (also known as

MilkyWay-2) hosted by China National Super Computer Center has used 48,000

Intel Xeon Phi 31S1P coprocessors, while the No. 2 supercomputer Titan hosted by

Department of Energy (DOE), DOE Office of Science (SC) and Oak Ridge National

Laboratory has used 18,688 NVIDIA K20x GPUs (Top500. 2013). The academic

publications on hardware accelerator-based Monte Carlo calculations is also on an

uptrend.
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Figure 1.1: Statistics of Top 500 supercomputers worldwide (Top500.
2013) using hardware accelerators. Since 2006 the hardware
accelerators have been utilized by a growing number of sys-
tems. The Nvidia GPU and Intel Xeon Phi coprocessor stand
out as the two most used ones.

1.4.1 Advantage of Hardware Accelerators

The Nvidia GPU and Intel Xeon Phi coprocessor are distinguished from other

accelerators by their rapid development and expanding domain of applications. One

of their main advantages is the high energy efficiency, i.e. the ratio of the delivered

computing performance to the consumed electric power. In the processor man-

ufacturing industry, there is a heuristic called Moore’s law (Moore 1998), which

states that the number of transistors on integrated circuits doubles approximately

every two years. It projects that we will arrive at the exascale computing era by

around 2020, by which time the No. 1 supercomputer can have a performance of

at least 1 exaFLOPS (1018 FLOPS). In developing this system, there will be four

unprecedented challenges identified by Kogge et al. (2008), including energy and

power, memory and storage, concurrency and locality, and resiliency, and the energy

and power problem is given the top priority. Because of that, the energy-efficient

GPU and coprocessor are considered a special candidate to enable the future su-

percomputer systems. In fact, by November 2013, the first 10 most energy-efficient

supercomputers worldwide on the Green 500 list (Green500. 2013) have all used

Nvidia GPUs, and No. 37 ∼ No. 42 supercomputers have all used Intel Xeon Phi
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coprocessors.

Figure 1.2: Performance of Top 500 supercomputers over the years
(Top500. 2013). Rmax refers to the maximal LINPACK per-
formance achieved in unit of FLoating-point Operations Per
Second (FLOPS). The increase in the performance of No. 1,
No. 500 and the total performance nowadays continues to
follow Moore’s Law.

Another main advantage of the hardware accelerators is the high computing

power — large FLOPS to be specifically — they are able to deliver on a single device.

The Moore’s law has been proven valid for approximately 50 years, as can partly be

reflected by the trend of the Top 500 supercomputers’ maximum performance over

time in figure 1.2. Due to technical and economic barriers, however, this law has

been challenged and will unlikely hold true indefinitely (Mack 2011). None the less,

the GPU and coprocessor could add a significant amount of computing power to

make the overall system performance keep pace with the projection of Moore’s law,

and thus arguably extend its validity to a longer period of time, as is suggested by

Dally (2010) and Jeffers & Reinders (2013, pp. 1–22). For example, the LINPACK

benchmark tests (Phillips & Fatica 2010, Intel. 2013f) performed by Nvidia and

Intel demonstrated that on a single node with 2 CPUs and 2 hardware accelerators
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as the additional computing units, the achieved maximal performance of the whole

heterogeneous system was 5.6 ∼ 8.2 times higher than that of 2 CPUs alone.

1.4.2 GPU Architecture and Programming Model

The graphics processing unit (GPU) was originally invented by Nvidia in 1999

(Nvidia. 2011). At that time it was a fixed function graphics pipeline used typically

for gaming purposes to process two types of graphics-specific programs called vertex

shader and pixel shader (Lindholm et al. 2008). Since then a rapid development of

the GPU technology has taken place. In around 2006, Nvidia introduced a paral-

lel computing platform called Compute Unified Device Architecture (CUDA) that

encompassed significant innovations on the compute architecture (hardware) and

programmability (software) of the GPU (Nvidia. 2011). CUDA enabled the GPU

to become more general-purpose such that it can solve wider range of scientific par-

allel problems beyond computer graphics alone. It also allowed the programmers

to write code in the common, high-level programming languages such as C/C++

and Fortran instead of the specialized graphics application programming interfaces

(API) (Nvidia. 2011). So far the CUDA GPU has had several generations, including

Tesla, Fermi, Kepler, Maxwell and Pascal, each being accentuated by an additional

technical innovation. For example, the first Tesla generation (released in ∼ 2008)

introduced CUDA itself; the past Fermi generation (released in ∼ 2010) supported

64-bit floating point operations, expanding the range of GPU applications; the cur-

rent Kepler generation (released in∼ 2013) introduces dynamic parallelism, reducing

the communication cost between CPU and GPU; the upcoming Maxwell generation

(expected to be released in ∼ late 2014) will provide compatibility with Microsoft’s

new multimedia API collection DirectX 12; the future Pascal generation (expected

to be released in ∼ 2016) will feature unified virtual memory (allowing the sys-

tem memory and GPU memory to be addressed in a single space) and 3-D stacked

memory (permitting more memory per unit of volume), substantially increasing the

memory size, bandwidth and the ease of programmability (Purches 2013).

Nvidia’s CUDA GPU adopts a hierarchical design in terms of the programming

abstraction, processing hardware and memory hardware (Hennessy & Patterson
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2012, pp. 288–315), explained as follows.

• Programming abstraction A CUDA code has two components: the host code

that is essentially the same with the conventional CPU code and executes in

sequence on the CPU, and the device code that executes in parallel on the

GPU. The device code consists of one or more kernels, which simply refers to

the user-developed GPU-specific functions. A kernel is executed by a large

number of parallel GPU threads (Nvidia. 2011). A certain number of threads

form a higher level of unit called block, and a certain number of blocks form

the highest level of unit called grid. The thread, block and grid constitute

CUDA’s programming hierarchy from the bottom to the top. Users can spec-

ify the number of threads per block and the number of blocks per grid launched

on the GPU. Besides, there is an additional concept called warps. A warp is a

bundle of 32 threads, and is an implementation of Nvidia’s Single-Instruction,

Multiple-Thread (SIMT) model wherein the 32 threads always execute a com-

mon instruction (Nvidia. 2013b).

• Processing hardware A CUDA GPU has a large number of basic processing

units called Streaming Processor (SP), also known as CUDA core. A num-

ber of SPs along with additional hardware accessories form a higher level of

unit called Streaming Multiprocessor (SM). A number of SMs with additional

accessories form the entire GPU (Nvidia. 2011). There is a close relation

between the processing hardware and the programming abstraction (Seibert.

2011). When a kernel is launched, a GPU global thread scheduler automati-

cally distributes the blocks to the available SMs for execution (Nvidia. 2011).

A block can reside in only one SM, and an SM can hold one or more blocks if

hardware resource permits. On each SM, a local warp scheduler automatically

organizes the execution of warps within the resident blocks. The instructions

from a warp are issued to a group of SPs on the SM. Different warps from the

same or different blocks may be interleaved and executed concurrently. It is

worth pointing out that on a CPU, one can explicitly attach threads or pro-

cesses to cores, but on a GPU, the mapping between blocks or warps to SMs
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is entirely automated by the hardware itself and currently does not permit

users’ intervention.

• Memory hardware A CUDA GPU has on-chip memory located on each SM,

and off-chip memory outside of them (Nvidia. 2013b). From a programming

perspective, these memories can be divided into several categories correspond-

ing to the hierarchical programming abstraction. A thread has an exclusive

space on the on-chip memory called register to store local variables, and also

a space on the off-chip memory called local memory to store excess variables

that the register cannot hold. A block has an exclusive space on the on-chip

memory called shared memory shared between threads within that block. A

grid has a global memory and constant memory space on the off-chip memory,

both shared among all the threads across the whole grid. Table 1.1 summarizes

the property of these memories.

Table 1.1: Memory of Kepler GPU. The table is a modification to the
one from Nvidia. (2013a). The scope refers to the level of
programming abstraction that can access the memory. The
lifetime refers to the duration of that accessibility.

memory register local shared global constant

managed by compiler compiler programmer programmer programmer

location on-chip off-chip on-chip off-chip off-chip

cached no yes no yes yes

access
read and
write

read and
write

read and
write

read and
write

read only

scope per thread per thread
all threads
per block

all threads
per grid

all threads
per grid

lifetime thread thread block
host allo-
cation

host allo-
cation

Apart from CUDA, the Nvidia GPU also supports several other types of pro-

gramming models, summarized in Table 1.2.
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Table 1.2: Programming models supported by the GPU and coprocessor.
The coprocessor allows more programming models.

hardware accelerator programming model supported

GPU CUDA, OpenCL, OpenACC, OpenMP

MPI-OpenMP, MPI-Pthreads, Cilk,
coprocessor

TBB, offload pragma, OpenACC, OpenMP

1.4.3 Coprocessor Architecture and Programming Model

In 2008, Intel introduced their own graphics pipeline architecture codenamed

“Larrabee”. It bundled many in-order CPU cores running an extended version

of the x86 instruction set (Seiler et al. 2008). In 2010, based on the Larrabee

processor, Intel started to develop their new, many-core coprocessor codenamed

“Many Integrated Core” (MIC) for general-purpose computing (Intel. 2010). The

initial prototype was named “Knights Ferry,” with 45 nm process, 32 CPU cores

operating at 1.2 GHz, and 2 GB on-board memory tantamount to GPU’s off-chip

memory (Intel. 2010). In around 2012, several major improvements were made

to the coprocessor, including enhanced semiconductor manufacturing processes (22

nm), more number of CPU cores (more than 50) and larger onboard memory (6 GB)

(Intel. 2012). The new coprocessor was named “Knights Corner,” later rebranded

as “Intel Xeon Phi” and became publicly available. The next generation of Intel’s

many-core product will be named “Knights Landing,” featuring the 14 nm process

and large on-package memory tantamount to GPU’s on-chip memory. The product

will appear either as the standalone CPU or as the hardware accelerator (Wechser

2014).

The coprocessor does not require a programmer to have as much intimate

knowledge on the hardware architecture as the GPU does. In practice, it can be

directly viewed and used as a many-core CPU, 57 ∼ 61 cores to be specific (Intel.

2013c, 2012, 2013d). There are, however, four unique features of the coprocessor

worth noting. First, the coprocessor has large built-in memory ranging from 6 to 16

GB. Second, each core has a 512-bit wide vector processor (Intel. 2013e). The vec-
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tor processor adopts the single instruction multiple data (SIMD) execution model.

In each clock cycle, it can perform 16 32-bit integer operations, 16 single-precision

(32-bit) floating point operations, or 8 double-precision (64-bit) floating point op-

erations. There are three major ways to utilize the vector processors on the Intel

Xeon Phi coprocessor. The simplest way is to rely on the automated vectorization

performed by Intel’s compiler. The code should be compiled with high level of opti-

mizations, typically larger than O2. Due to the conservative nature of the compiler,

however, the portion of code that can be vectorized this way is usually very lim-

ited, if not nothing at all. The second way is to apply the compiler directives (e.g.

#pragma ivdep) to a block of code to assist the compiler with vectorization. The

compiler directives can be regarded as a promise made by the developers that “the

marked code does not have data dependency and the compiler should feel safe and

free to vectorize it”. The advanced way of using vector processors is to explicitly

write the code with vectorization syntax, such as using array notations to manip-

ulate multiple data at the same time (Intel. 2013b). Third, 4 “hardware threads”

are supported per core on the coprocessor as opposed to 2 hyperthreads per core

on the conventional CPU. There are both similarities and differences between the

hardware threads and the hyperthreads. On the one hand, in both implementations

threads have their private architectural state such as the registers, while sharing the

execution resource such as the execution engine and the cache (Intel. 2003, 2013e).

On the other hand, the hardware thread on a coprocessor is designed for in-order

execution that typically requires 2 ∼ 4 threads per core for optimal performance,

while the hyperthread is for out-of-order execution, whereby it may be beneficial or

detrimental to use more than one threads, usually being case-dependent. Fourth, the

coprocessor cores are linked with each other via a ring interconnect (Intel. 2013e).

The coprocessor supports a wide variety of programming models, summarized

in Table 1.2. Especially, it permits some existing models, such as MPI-OpenMP

and MPI-Pthreads, that have already been widely adopted in CPU-based systems.

This advantage significantly reduces the effort of code porting.



15

1.5 Literature Review

Several groups have already applied the GPUs to MC-based photon and elec-

tron transport simulations. Badal & Badano (2009, 2011) developed the MC-GPU

code for X-ray radiography simulation and radiography dose calculations, and re-

ported a speedup of 110 over the CPU-based MC code, PENELOPE (Baró et al.

1995). Jia et al. (2010, 2011) developed the gDPM code based on the CPU-based

DPM that was originally created by Sempau et al. (2000), and observed a speedup

of 69.1 ∼ 87.2 over the CPU code for radiotherapy dose calculations. Hissoiny et al.

(2011) developed the GPUMCD code for coupled electron-photon transport and re-

ported that for electron transport the speedup factors were 210 and 1200 compared

to general-purpose codes DPM and EGSnrc, respectively, while for photon trans-

port the numbers were 20 and 940. From our group, Liu et al. (2012a) developed

the CPU and GPU-based MC codes for CT organ dose calculation. On a single

GPU, the code was found to be 19 times faster than the CPU code and 42 times

faster than MCNPX (Pelowitz 2008). The speedup factors were doubled on a dual-

GPU system. Jahnke et al. (2012) developed the Geant4-based (Carrier et al. 2004)

GMC code and claimed a speedup of 4860 over Geant4 running on one CPU core

for Intensity-Modulated Radiation Therapy (IMRT) MC simulations. Chen et al.

(2012) developed an MC tool for CT dose calculations using multi-slice CT (MSCT),

flat-detector CT (FDCT), and micro-CT scanners, and observed a speedup factor

in the range of 40 ∼ 50 using a single GPU compared to a single-core CPU.

Caution should be exercised in understanding and interpreting these impres-

sive speedup factors. Most of the studies only compare the parallel GPU code with

the single-threaded CPU code run on a single CPU core. But the multi-core CPU

architecture has become the mainstream since 2005 (Moore 2010), and Intel CPUs

in particular provide additional parallelism through the hyperthreading technology

(HTT) (Intel. 2003). Lee et al. (2010) discovered that for a wide variety of algo-

rithms, by applying multithreading and other appropriate optimization techniques,

the performance gap between an Nvidia GTX 280 GPU and an Intel Core i7-960

CPU could be reduced, on the average, to 2.5× only. Thus for a fair comparison

of different hardware platforms, it is necessary to parallelize and optimize the code
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on each platform to make the most of all the hardware resource available (Liu et al.

2014a).

1.6 Objectives

This doctoral research aims to fill the gap created by the rapid development

of hardware accelerators in the high performance computing industry and their in-

compatibility with the existing Monte Carlo particle transport codes. Four primary

undertakings as follows are carried out.

1. To develop a new generation of Monte Carlo photon transport code on the

heterogeneous computing system. The code shall have three variants designed

and fine-tuned for three different parallel platforms on the system: the tra-

ditional multi-core central processing units (CPU), the new Nvidia graphics

processing units (GPU) and the new Intel Xeon Phi coprocessors. The code

shall incorporate a validated CT scanner model and have the capability to

handle anthropomorphic phantoms to enable Monte Carlo simulations in CT

dose calculations.

2. To verify the developed code against the production code Monte Carlo N-

Particle eXtended (MCNPX) in a series of dosimetric benchmark tests. To

validate the simulation models against the experimental measurements.

3. To evaluate the computing efficiency, energy efficiency, cost effectiveness, scal-

ability of the developed code, and explore the level of concurrency achievable

on the heterogeneous computing system.

4. To apply the developed code to clinical CT dosimetry.



CHAPTER 2

MATERIALS AND METHODS

“C is quirky, flawed, and an enormous success.”

—Ritchie, Dennis

This chapter expounds the development process of the photon transport mod-

ule of our Monte Carlo code named Accelerated Radiation-transport Computations

in Heterogeneous EnviRonments (ARCHER) (Xu et al. 2013). This photon trans-

port module is specifically designed for the CT dosimetry application. Another com-

ponent of ARCHER is the electron transport module for the radiotherapy dosimetry

application and is detailed in the publication by Su et al. (2014). There are a total

of 9 sections in this chapter. Section 2.1 provides a panoramic view of heteroge-

neous computing, and pinpoints the specific parallel paradigm we are adopting in

ARCHER design. Section 2.2 describes the hardware specifications of our heteroge-

neous computing system. Section 2.3 explains how the photon transport process is

simulated using Monte Carlo methods. Section 2.4 explains how the radiation dose

from the CT scan is estimated in ARCHER. Section 2.5 showcases the modelling of

CT scanner and patients. Section 2.6 elaborates on the approaches to develop and

optimize different variants of ARCHER to specific hardware platforms. Section 2.7

shows the verification and validation tests used to examine the functionality and

suitability of ARCHER in CT dose calculations. Section 2.8 describes the method

Portions of this chapter previously appeared as: Liu, T., Ji, W. & Xu, X. G. (2013), Devel-
opment of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi
architecture, in ‘International Conference on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013)’, Sun Valley, ID, pp. 1199-1210.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).
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to evaluate the performance of ARCHER, including the computing and energy ef-

ficiency. Finally, section 2.9 shows our preliminary effort to apply ARCHER to a

clinical CT scan procedure.

2.1 Overview

Developing a code capable of utilizing the emerging hardware accelerators —

the GPU and coprocessor — requires the provision of a heterogeneous computing

system, defined as the one that uses more than one kind of processors (AMD. 2012).

The CPU is still an indispensable component, since the hardware accelerators alone

have so far been unable to work independently and need CPU’s coordination. Fig-

ure 2.1 demonstrates a generic model of such heterogeneous system, which is con-

structed in a hierarchical pattern with respect to the hardware architectures as well

as the programming models. For the hardware architectures, the system contains

a number of individual nodes connected with one another. Each node has several

CPUs and hardware accelerators. Every CPU controls a set of hardware accelerators

in that node. For the programming models, on the CPU or coprocessor, there can

be one or more processes, each containing a group of threads. On the GPU, one or

 node 

 CPU 

process thread 

 GPU 

grid 

block 

thread 

 coprocessor 

thread 

process 

Figure 2.1: The generic model of a heterogeneous computing system.
Both the hardware architectures and the programming mod-
els are based on the hierarchical design.
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more grids can reside, each being made of a number of blocks, which can further be

split up into a number of threads.
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Figure 2.2: General flowchart of ARCHER. The meaning of the symbols
are: rounded rectangles — start or end; rectangles with dot-
ted line — indication of the entry point of the parallel code;
regular rectangles — generic processing; parallelograms —
file I/O; diamonds — decision-making.

This research focuses on implementing a special case of such heterogeneous

computing paradigm, whereby a single node is built with a single CPU to con-

trol several hardware accelerators, and a new Monte Carlo photon transport code

is developed to test the efficacy of each computing unit. The code is named

as Accelerated Radiation-transport Computations in Heterogeneous EnviRonments

(ARCHER). It is composed of three variants, the CPU code ARCHERCPU, the GPU

code ARCHERGPU, and the coprocessor code ARCHERCOP. Conceptually, all the

codes are composed of two logical parts, shown in figure 2.2, the serial code (in light

blue) performing initialization, finalization, file I/O, scheduling, etc, and the parallel

code (in light yellow) performing the compute-intensive Monte Carlo simulations.

The parallel part of ARCHER is ultimately what we aim to accelerate and

compare across different hardware platforms in terms of the computation perfor-

mance, energy efficiency, etc. Thus each code variant is named after their specific
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(e) Concurrent execution of the
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Figure 2.3: Relationship between the serial and parallel parts of
ARCHER and the hardware platform. (a) ARCHERCPU is
entirely run on the CPU. (b) ARCHERGPU has the parallel
part run on the GPU and the serial part on the CPU. (c)
ARCHERCOP is entirely run on the coprocessor, while the
script to manage data transfer between the host and copro-
cessor executes on the CPU. (d) The CPU and GPU work
concurrently. (e) The CPU and coprocessor work concur-
rently.

hardware platform where the parallel part is physically executed. It is, however,

necessary to clarify that for the hardware accelerator variants, a certain part of the

code always needs to run on the CPU. The relationship between the code and the

hardware platform is more clearly illustrated in figure 2.3. ARCHERCPU is entirely

run on the CPU. ARCHERGPU has only its parallel part run on the GPU. The en-

tire executable file of ARCHERCOP is run locally on the coprocessor, but the script

used to upload the input data and the executable file to the coprocessor as well as

download the result back to the host still needs to run on the CPU. Aside from de-

veloping each code variant, another important area we have explored is to increase
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the system concurrency, i.e. to have multiple computing units running Monte Carlo

simulations at the same time to maximize the overall arithmetic throughput. This

aspect of work, shown in figure 2.3d and figure 2.3e, is done on multiple scales. In

an increasing order, it includes achieving the concurrency of multiple grids on a

single GPU, the concurrency of multiple GPUs, and the concurrency of CPU and

hardware accelerators.

2.2 Hardware Specifications

The heterogeneous computing system used in this research is built upon a

Tyan FT77-B7015 4U Rackmount server (TYAN. 2010). The motherboard has two

Land Grid Array (LGA) 1366 CPU sockets and eight second-generation Peripheral

Component Interconnect Express slots with 16 lanes (PCIe 2 ×16). The computing

units used include one Intel Xeon X5650 CPU, six Nvidia Tesla M2090 GPUs, one

Nvidia Tesla K20 GPU, one Nvidia Tesla K40 and one Intel Xeon Phi 5110p. The

hardware accelerators are mounted to or dismounted from the PCIe slots according

to the actual need in different tests. The specifications of the computing units are

summarized in table 2.1, where the memory refers to the external main memory for

the CPU, and internal onboard memory for the hardware accelerators.

coprocessor 

CPU 

GPU 

Figure 2.4: A photograph of our heterogeneous computing server.
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Table 2.1: Computing units of the heterogeneous computing system.

hardware model processor microarchitecture memory

specification specification

CPU
Intel Xeon
X5650

6 cores Westmere 16 GB

Nvidia Tesla
M2090

16 SMs, 32 SPs
per SM

Fermi 6 GB

Nvidia Tesla
K20

13 SMs, 192
SPs per SM

Kepler 5 GBGPU

Nvidia Tesla
K40

15 SMs, 192
SPs per SM

Kepler 12 GB

coprocessor
Intel Xeon
Phi 5110p

60 cores Knights Corner 8 GB

2.3 Monte Carlo Methods

2.3.1 Theory

The Monte Carlo photon transport problem is often centered around quanti-

fying the photo-atomic collision density. It can be mathematically described by the

linear time-independent Boltzmann transport equation 2.1 (Brown 2005), where r

is the position vector, v is the velocity vector, Ψ(r,v) is the angular collision den-

sity, S(r′,v) is the source term, C(r′,v′ → v) is the collision kernel that changes

the velocity of the particle at a certain position, and T (r′ → r,v) is the transport

kernel that changes the position at a certain velocity.

Ψ(r,v) =

∫
dr′
[∫

Ψ(r′,v′)C(r′,v′ → v)dv′ + S(r′,v)

]
T (r′ → r,v) (2.1)

An alternative form to the Boltzmann transport equation 2.1 with simpler

notations and clearer physical meaning is given by equation 2.2 and equation 2.3

(Brown 2005). The position vector r and velocity vector v represent the status

of the photon, and can therefore be grouped into p = (r,v); the collision kernel
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C(r′,v′ → v) and transport kernel T (r′ → r,v) change the status of the photon

from p′ to p and can therefore be combined into R(p′ → p) = C(r′,v′ → v)T (r′ →
r,v). Equation 2.2 indicates that the collision density Ψ(r,v) can be regarded as

a superposition of a series of components having exactly k photo-atomic collisions

(k = 0, 1, 2, ...), while equation 2.3 defines each component.

Ψ(p) =
∞∑
k=0

Ψk(p) (2.2)

Ψk(p) =


∫
S(r′,v0)T (r′ → r0,v0)dr′ k = 0∫
Ψk−1(pk−1)R(pk−1 → pk)dpk−1 k = 1, 2, ...

(2.3)

By repeatedly substituting for Ψk(p) (k = 0, 1, 2, ...), one finally obtains equa-

tion 2.4 (Brown 2005), which pinpoints the fact that the history of a photon consists

of a sequence of status transitions, and that the transition is Markovian, meaning

that status pk relies only upon pk−1 and is irrelevant to prior statuses.

Ψk(pk) =

∫
dp0Ψ0(p0)R(p0 → p1)

∫
dp1R(p1 → p2)...

∫
dpk−1R(pk−1 → pk) (2.4)

This property of photon transport is faithfully simulated by the Monte Carlo

methods using random sampling. The process is as follows. At the beginning the

initial photon status is Ψ0(p0) stochastically determined. Then the next photon

status is determined by sampling from the the distribution of the status transition

represented by R(p0 → p1). More concretely, this involves sampling the path-

length, i.e. the distance that the photon travels before collision with an atom,

from the transport kernel to change the position of the photon, and sampling the

interaction type, such as the photoelectric effect, incoherence scattering and coherent

scattering for CT X-rays, from the collision kernel to change the energy and flight

direction. The random-walk process continues by repeatedly sampling from R(pk →
pk+1), k = 1, 2, ... and the photon is free to travel throughout the heterogeneous

problem geometry. The history of the photon is terminated once it is absorbed by
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the photoelectric effect or escapes from the region of interest.

The physical quantities of interest, such as the flux, current and energy depo-

sition, are tallied and accumulated during the history of a single photon and across

many histories. The ensemble estimate obtained yields an expected-value solution

of the transport equation (Brown & Martin 1984), demonstrated by equation 2.5,

where xj,k is the contribution of each collision to the tally of a single history, xi is

the contribution of each history to the overall tally, and x̄ is the expected value.

x̄ =

n∑
i=1

(
∞∑
j=1

xj,k

)
n

=

n∑
i=1

xi

n
(2.5)

Due to the statistical nature of the Monte Carlo method, the mean value x̄

itself is a random variable and is always accompanied by a statistical error. The

mean value along with its error constitutes the Monte Carlo calculation results.

The central limit theorem (X-5 Monte Carlo Team 2003a) dictates that x̄ follows

the normal distribution with a variance given by equation 2.6. It is a common

practice to report the statistical error in the form of relative standard deviation,

defined by equation 2.7, which represents the statistical precision as a fractional

result with respect to the estimated mean (X-5 Monte Carlo Team 2003a).

S2
x̄ =

n∑
i=1

(x2
i )

n
−


n∑
i=1

xi

n


2

(2.6)

R =
Sx̄
x̄

(2.7)

2.3.2 Radiation Transport Simulation in ARCHER for CT

The Monte Carlo simulation in ARCHER starts at the focal spot of the X-

ray tube. The initial position P = (x, y, z) and flight direction ~Ω = (u, v, w) of

the photon are sampled according to the focal spot geometry and the X-ray beam

shape, and the initial energy E is sampled from a given kVp-dependent spectrum.

The photon is continually tracked throughout the geometries — the analytical model
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of the CT bowtie filter, the voxelized patient phantom and the surrounding air —

until it is absorbed, leaks the region of interest or falls below the cutoff energy

(1 keV). The path-length s is sampled using the Woodcock delta tracking method

(Woodcock et al. 1965) to reduce the computation cost. For a photon at a certain

energy E, the macroscopic cross-sections of all the cells are calculated and the

maximum value Σtt,max(E) is found out. This value is termed fictitious macroscopic

cross-section in the nuclear engineering. The path-length is then sampled from an

exponential distribution using equation 2.8, where ξ is a pseudo-random number

uniformly distributed between 0 and 1.

s = − logξ

Σtt,max(E)
(2.8)

For performance consideration, the fictitious macroscopic cross-section is pre-

tabulated instead of being calculated on the fly. Each time the photon is relocated,

a “where am I” subroutine is called to find out which geometry the photon is inside

of and update the value of the local macroscopic cross-section Σtt(E) accordingly.

Then the conditional expression ξ < Σtt(E)
Σtt,max(E)

is evaluated. If it evaluates to true,

then the photon is considered to have a realistic collision, and the Monte Carlo

random walk proceeds. If it is false, then the collision is regarded as “virtual,” and

the path-length is resampled, and the conditional expression reevaluated, until it

becomes true.

Once the realistic collision site is determined, the atom with which the photon

collides is randomly sampled. To improve ARCHER’s performance, we adopt a semi-

deterministic method by regarding the photon interacting with the entire molecule,

and avoiding the calculation of atom-specific, energy-dependent microscopic cross-

sections. Instead, the macroscopic cross-sections for different types of interactions

are pre-tabulated. This photo-molecular interaction model is proven an efficient

alternative to the analogue photo-atomic model.

The interaction type is sampled from three possible events dominant in the CT

application: photoelectric effects, incoherent scattering (i.e. Compton scattering)

and coherent scattering (i.e. Rayleigh scattering) (Attix 2008, pp. 124–160). More

concretely, let Σpe, Σinc, Σtt represent the photoelectric effect, incoherent scattering
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and total linear attenuation coefficients, respectively. The photoelectric effect will

occur if ξ < Σpe/Σtt; the incoherent scattering will occur if Σpe/Σtt ≤ ξ < (Σpe +

Σinc)/Σtt; and the incoherent scattering will occur otherwise.

In the photoelectric effect, the photon is terminated immediately. In ARCHER,

we adopt a special way to simulate the ensuing fluorescence X-ray. If the photon

collides with a certain group of organs that contain “fluorescence-prone” atoms,

then whether the photon collides with those atoms is randomly sampled accord-

ing to the cross-section fraction. For atoms with Z ≥ 31 — which is labelled as

the fluorescence-prone atom — the primary and secondary fluorescence are both

explicitly simulated (Everett & Cashwell 1973). In our phantom only the iodine

(Z = 53) located in the thyroid falls into this category, and it releases primary

fluorescence with energy as high as ∼30 keV. For Z ≤ 11, the fluorescence is not

simulated because it is below the cutoff energy (1 keV) (Everett & Cashwell 1973).

For 12 ≤ Z ≤ 30, the primary fluorescence is ignored in the current release of

ARCHER.

The scattering interactions are accurately modelled by accounting for the elec-

tron’s binding effects (Cashwell et al. 1973). Specifically, for incoherent scattering,

the angular distribution of the scattered photons is modified by the incoherent form

factor I(Z, ν) to reduce the scattering cross-section in the forward direction. The

probability density function (PDF) is expressed by equation 2.9, where µ is the

polar angle cosine, Z is the atomic number, E is the energy of the incoming pho-

ton, ν is the inverse length (ν = ωE
√

1− µ, ω is a physical constant), K(E, µ) is

the classic Klein-Nishina differential cross-section, and σinc(Z,E) is the incoherent

cross-section.

finc(µ) = I(Z, ν)K(E, µ)/σinc(Z,E) (2.9)

For coherent scattering, the angular distribution is modified by the coherent

form factor C2(Z, ν) to reduce the scattering cross-section in the backward direc-

tion, whose PDF is expressed by equation 2.10, where T (µ) is the classic Thomson
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differential cross-section and σcoh(Z,E) is the incoherent cross-section.

fcoh(µ) = C2(Z, ν)T (µ)/σcoh(Z,E) (2.10)

To improve performance, µ is obtained by sampling from pre-calculated lookup

tables based on the two PDFs. The tables are three dimensional matrices µi,j,k,

where i is the material index, j is the energy grid index, and k is the index of the

cumulative density function (CDF) grid for finc or fcoh. The method to generate

and sample from these matrices is similar to the one devised by Jia et al. (2012).

Secondary electrons from the photo-atomic interactions are not simulated, and

electron energy is assumed to be locally deposited. This is a valid assumption be-

cause for the CT application the Continuous Slowing Down Approximation (CSDA)

range of electrons inside the phantom is generally one order of magnitude smaller

than the dimension of a voxel. The capability of electron transport is developed in

another module of the ARCHER for radiation therapy (Su et al. 2013).

The photo-atomic data are derived from MCPLIB04 library (X-5 Monte Carlo

Team 2003a). The pseudo-random numbers in ARCHER are generated using the

Xorshift algorithm (Marsaglia 2003) provided by the CURAND library (Nvidia.

2012). Although this generator is not ideal because it does not pass some of the

statistical tests (Panneton & L’ecuyer 2005), it is fast (Marsaglia 2003, Nvidia. 2012)

and has a good enough quality for Monte Carlo particle transport simulations (Jia

et al. 2012, Liu et al. 2014a).

2.4 Radiation Dose Calculations

2.4.1 Dose Tallies in ARCHER for CT

The dosimetric quantity of interest in our MC calculation is the absorbed dose

D. Under the Transient Charged Particle Equilibrium (TCPE) condition (Attix

2008, pp. 61–80), which is usually satisfied in the human body, it is equal to the col-

lision kerma Kc. ARCHER counts D using MCNP’s pre-tabulated heating numbers

that represent the average energy deposition per collision (X-5 Monte Carlo Team

2003a). The count is carried out prior to the determination of a specific interaction

type. The heating numbers include the fluorescence energy for Z ≤ 11 and exclude
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it otherwise. The analytical expression of D is given by equation 2.11, where m

is the mass of the tallied organ or tissue, E is the photon energy, t is the time, V

is the tallied space, ~Ω is the solid angle, H is the heating number representing the

average energy deposition per collision, ~r is the spatial vector, Σt is the total linear

attenuation coefficient, also known as the total macroscopic cross-section, and φ is

the angular flux of the photon.

D =
1

m

∫
dE

∫
dt

∫
dV

∫
d~ΩH(E)Σt(~r, E)φ(~r, ~Ω, E, t) (2.11)

In MC method, this quantity is estimated using equation 2.12, where ∆D

denotes the dose increment in a single collision event.

∆D =
H(E)

m
(2.12)

Special treatment was applied to the calculations of dose to the bone surface

and red bone marrow (Schlattl et al. 2007). First, since the bone surface is as thin as

10 µm and cannot be directly modelled in voxel phantoms, its dose is approximated

by the dose to the spongiosa (Zhang et al. 2009). Second, the dose to the red bone

marrow DRBM is derived from the dose response function RRBM(E), an energy-

dependent weighting factor, shown in equation 2.13.

DRBM =
1

m

∫
dE

∫
dt

∫
dV

∫
d~ΩRRBM(E)φ(~r, ~Ω, E, t) (2.13)

In MC method, this quantity is estimated using the collision estimator in

equation 2.14.

∆DRBM =
RRBM(E)

mΣt(~r, E)
(2.14)

In ARCHER, the above method for dose tallies is implemented in three forms,

listed as follows.

• Organ dose tally This type of tallies applies to the case where the computa-

tional phantoms have well-segmented organs, including all the voxelized phan-

toms described in section 2.5.2. An organ in such phantoms may contain one
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or more cubic voxels that have exactly the same density and elemental com-

position. The dose and statistical error are calculated for the entire organ.

• Point dose tally This type of tallies applies to the case where the phantoms are

converted directly from the DICOM image described in section 2.5.3 and do

not have well-segmented organs. The dose and statistical error are calculated

for a user-specified region — a box that contains one or more cubic voxels that

may have different density and elemental composition.

• Dose distribution tally This type of tallies applies to both type of phantoms

mentioned above. It calculates the dose and statistical error to each individual

voxel, and the result is a 3-D matrix having the same dimension with the

phantom itself.

In both the organ and point dose tallies, each thread on the CPU, GPU or

coprocessor holds one full list of local dose counters. There are two different methods

to collect the result from all the threads. One is the atomic summation. Once a

photon on a thread is terminated, the list of local dose counters are added to a single

list of global counters. Here the addition operation is made “atomic” in order to

avoid race conditions, where multiple threads compete in performing the read-and-

modify operation on the same memory location simultaneously. Atomic summation

serializes the participating threads and guarantees all the values carried by them

are correctly added together. This method was previously used by Jia et al. (2010),

Chen et al. (2012) in the CT dose calculations. The other method is the parallel

summation. Upon finishing a photon, each thread adds the local dose counters to a

thread-private list of global counters. In other words, the number of lists of global

counters is not one, but the same with the number of threads. After all the threads

complete their computation, an elaborately designed reduction algorithm developed

by Nvidia (Harris 2011) is used to efficiently sum up the data in the long list of

global counters. The atomic summation has the advantage of smaller of memory

usage. None the less, it is offset by the disadvantage that the accuracy of floating

point calculation may be negatively affected, which is demonstrated in figure 3.1 of

section 3.1.1. Hence in ARCHER, the parallel summation method is always used
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for the organ and point dose tallies (Liu et al. 2013, Liu et al. 2014a).

For the dose distribution tally, due to the limitation of memory space, it is

usually not practical to have each thread hold the local dose counters of a large size.

Thus the atomic summation method is used as the last resort. The batch statistics

(Romano & Forget 2013) method is adopted in ARCHER to correctly evaluate the

statistical error without using local dose counters.

2.4.2 Conversion of Simulated Dose to Absolute Dose

The direct output of ARCHER, similar to MCNPX (X-5 Monte Carlo Team

2003a), is normalized to be per starting particle and has an unit of MeV per gram

per source particle. In order to have a real dosimetric meaning, the total number

of particles N resulting from a certain CT scan needs to be known to convert the

result into MeV/g and finally into the conventional form mGy. N can be expressed

by equation 2.15, where I(t) is the intensity of tube current, t is the time, T is

the total duration the X-ray tube is turned on, λ denotes the number of photons

emitted from the X-ray tube per unit of electric charge.

N = λ

∫ T

0

I(t)dt (2.15)

Strictly, λ is only a function of kVp and tube internal geometry and is inde-

pendent of other external parameters such as the geometries of collimator, bowtie

filter, phantom and the movement of the scanner.

While I(t) and t are both predetermined and can be obtained from the DICOM

files, the conversion factor λ needs to be experimentally derived. This work was ini-

tially performed by Gu (2010) and later modified by Ding (2012). Their experiments

were performed using the standard CTDI100 setup, in which an air-equivalent ion

chamber was placed at the isocenter without the presence of any phantom, and an

axial scan with 100 mAs was performed. The conversion factor is thus obtained by

equation 2.16, where Dabs is the measured absolute dose and Dsim is the simulated

dose.

λ100 =
Dabs [mGy/100mAs]

Dsim [MeV/g/source particle]
(2.16)
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Compared with λ, the coefficient λ100 is more convenient in practice in that it

is normalized to a better base — per 100 mAs, and also it inherently accounts for

the conversion from MeV/g to mGy.

In general, given a total of P discrete scanner projections, the tube current Ii

in mA at the ith projection, the duration ∆t in sec of the X-ray tube on when the

scanner moves from the ith projection to the i + 1th, and the MC simulated dose

Dsim,i at the ith projection normalized by the number of histories Ni emitted from

that projection, the absolute dose can be estimated by equation 2.17.

Dabs =
∑
i

Dabs,i =
∑
i

(
λ100Dsim,i

Ii∆t

100

)
=
λ100Ii∆t

100

∑
i

Dsim,i (2.17)

For tube current modulation, equation 2.17 can be directly applied to calculate

the overall absolute dose. Usually the component Dabs,i is found useful in studying

the angular dependency of the dose. For fixed tube current, the total duration

of the X-ray tube on T is often explicitly known, and equation 2.17 reduces to

equation 2.18. It should be noted that in this study the CT scanner was modeled in

a special way (Gu 2010) in that the sampling of initial source direction (mentioned

in 2.5.1) takes the beam collimation into account. This indicates that the collimator

is now considered part of the X-ray tube geometry, and thus λ100 is also a function

of beam collimation beyond kVp and tube internal geometry alone.

Dabs =
λ100IiT

100P

∑
i

Dsim,i (2.18)

2.5 CT Scanner and Patient Modeling

2.5.1 MDCT Scanner Model

ARCHER incorporates a GE LightSpeed 16 Pro multi-detector CT scanner

model. It was reviously developed and validated by Gu (2010) and Ding (2012)

using MCNPX code. It is composed of two objects: the source and the bowtie filter.

The geometry of the source is illustrated in figure 2.5. An isotropic X-ray point

source is placed at the center of a hypothetical sphere S which intersects with a
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hypothetical box C called cookie-cutter. The name originates from MCNPX (X-5

Monte Carlo Team 2003b) where a cookie-cutter cell is used to define geometrically

complicated source distribution. The intersection of S and C is a curved surface

H which determines the shape of the X-ray beam: if the initial direction vector of

the source particle is sampled such that its intersection with S is outside of H, it is

rejected and re-sampled; otherwise it is accepted and the MC random walk process

continues.

Figure 2.5: Top view (left) and perspective view (right) of the X-ray
source model (Gu 2010, Ding 2012).

The area of H is significantly smaller than that of S. Thus, the isotropic

source model originally defined in MCNPX code results in high rejection rate and

unnecessarily long computation time. To alleviate this problem, the source model

in ARCHER is modified such that its initial direction is artificially biased toward

H. Specifically, in figure 2.5, the vertex of H pointed to by the annotation arrow

is the location where the polar angle consine µ (cosine of the angle θ from z axis

to the direction vector) and the azimuthal angle φ (the angle from x axis to the

projection of the direction vector onto x-y plane) achieve their maxima µ0 and

φ0. To effectively reduce the rejection rate, we regulate that µ ∈ [−µ0, µ0] and

φ ∈ [−φ0, φ0]. It should be noted that for µ and φ that are sampled independently

following this regulation, the resultant beam area will be slightly larger than H.

This is illustrated in figure 2.6. Therefore, to create the intended beam shape, a
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rejection sampling process is still needed to filter out the particles whose initial

directions point to the green area, but fortunately the rejection rate is considerably

lower than the previous isotropic case.

Figure 2.6: Close-up of the X-ray source model. When µ and φ are sam-
pled independently, the beam area having U2 as the bound-
ary is larger than the intersection H of the source sphere and
cookie-cutter box having U1 as the boundary. The difference
colored in green is very small, indicating a low rejection rate.

The initial attributes of the particle includes its direction, position and energy.

The direction is sampled as stated above. The position is the intersection of H with

the direction vector. The energy is sampled from X-ray spectra generated from

Xcomp5r, a DOS program developed by Nowotny & Höfer (1985). The anode angle

and aluminum flat filter are both taken into account in this utility.

The bowtie filter model is represented by the shaded region in figure 2.7. It is

constructed from a box B, two elliptic cylinders E1 and E2, and a plane P through

boolean operations. It is critical to properly determine the geometric parameters

of these objects, as they are directly related to the X-ray beam quality. Because

the manufacturer-provided data were unavailable, Gu (2010) adopted an iterative

trial-and-error approach to approximate and fine-tune the parameters until the sim-

ulation was eventually in agreement with the experiment with 6% tolerance, using

the Computed Tomography Dose Index (CTDI) phantom. Gu (2010) modeled two

types of bowtie filters for different scan protocols, a head and a body bowtie filter,
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which only differ in the geometric parameters.

Figure 2.7: Bowtie filer model represented by the shaded region.

The combination of source and bowtile filter models constitutes the MDCT

scanner model. In reality, the CT scanner continuously emits X-ray photons when

rotating around the patient. In the MC simulation, this process is discretized into a

sequence of scanner projections : we assume that the scanner moving from position

Pi at time ti to position Pi+1 at time ti+1 delivers the radiation dose that is equivalent

to the scanner staying at Pi from ti to ti+1. The number of projections per rotation

is set to 16 as an appropriate approximation suggested by Gu et al. (2009). Two

types of scanner movement — axial and helical scans — are modeled. The sign of

the incremental angle between adjacent scanner projections is user-specified, and it

determines the direction of circular motion (clockwise or counter-clockwise).

With the above scanner model incorporated, ARCHER provides fully cus-

tomizable scan protocols. Users have the freedom to specify the parameters as

follows:

• Pitch The pitch is defined as the ratio of the table feed per rotation to the

beam collimation.

• Scan mode The scan mode encompasses axial or helical scan.

• Scan region The region that undergoes CT scan is determined through a pair

of parameters: the total number of scanner projections, and the incremental

distance along the axis of rotation between adjacent projections. The lat-
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ter parameter relates to the pitch as such: pitch = incremental distance ×
16/beam collimation

• kVp kVp refers to the tube voltage information given in the form of X-ray

spectrum. Four pre-tabulated spectra are available: 80, 100, 120 or 140 kVp.

• Bowtie filter type Head or body bowtie filters.

• Beam collimation The beam collimation is defined as the width of the collima-

tion over the area of active X-ray detection. Four kinds of beam collimation

is available to choose from: 1.25, 5, 10, or 20 mm.

Besides, it is noted that the approach by the former researchers in our group to

simulate the scanner movement in MCNPX varies from case to case. This complexity

has been accounted for in ARCHER by providing three simulation options:

• Per-projection simulation The total number of particles is evenly distributed

among all the projections, which are treated in sequence: particles emitted

from the ith projection are simulated; the radiation doses are calculated and

output; then particles from the i+1th projection are handled. This option was

selected in case of tube current modulation, where the simulated per-projection

dose is modified by a projection-specific, angular-dependent coefficient to es-

timate the realistic dose.

• Per-rotation simulation The total number of particles is evenly distributed

among all the rotations, which are treated in sequence: particles emitted from

the ith rotation are simulated; the radiation doses are calculated and output;

then particles from the i + 1th rotation are handled. Within each rotation,

which projection the particle is emitted from is randomly sampled. This option

was selected when a hypothetical whole-body axial scan with pitch of 1 was

performed in order to establish a dosimetric database for the VirtualDose

software (Ding 2012).

• Random-selection simulation The projection from which the particle is emitted

is randomly sampled from all probable projections along the scanner trajec-
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tory. This option was selected to simulate a clinical helical scan(Ding et al.

2010).

2.5.2 Anthropomorphic Phantoms

ARCHER incorporates a library of voxelized whole-body phantoms with de-

tailed anatomical information. These phantoms were developed in our previous

research, including VIP-Man (Xu et al. 2000), RANDO (Wang et al. 2004), RPI-

Pregnant women with 3, 6 and 9 months of gestation (Xu et al. 2007), ten extended

RPI-Adult females and males representing patients of different Body Mass Indices

(BMI), from normal to overweight and to morbidly obese (Zhang et al. 2009, Na

et al. 2010, Ding et al. 2012b, Liu et al. 2014a).

2.5.3 Patient-Specific Phantoms

In a clinical situation, the existing computational phantoms cannot be directly

used in MC simulation, due to the fact that their anthropometric and anatomical

parameters can significantly differ from those of the real patients. It is necessary

to devise a strategy that capitalizes on the clinically obtained information, such as

body weight, height or Body Mass Index (BMI), DICOM files, and effectively gen-

erates patient-specific phantoms. One proposed approach is to develop in advance

a series of voxelized phantoms with incrementally changed parameters and seek the

one that best suits the patient. This requires the developed series be sufficiently

exhaustive to cover as wide body variations as possible. Examples of such series

include RPI deformable phantoms (Na et al. 2010, Ding et al. 2012b) and UF adult

and pediatric phantoms (Johnson et al. 2009). However, an exact match may rarely

happen, whereby the MC simulation using the approximate phantom almost always

starts with some existing systematic error. The second possible approach is a variant

of the first one. The aforementioned “voxelized” phantoms are in fact derived from

their “boundary representation” parent phantoms consisting of a massive amount of

control points. The control points provide great flexibility for free geometry alter-

ation not permitted in the voxelized phantoms. Given the patient’s anthropometric

parameters, a good match can be computationally obtained by interpolating be-

tween existing boundary representation phantoms (Liu et al. 2011). However, the
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voxelization process that follows, which translates the matching phantom into its

voxelized counterpart is very time-consuming — typically 2 days — thwarting the

attempt for fast dose calculation.

The third approach adopted in this study has a marked advantage over the

former two with respect to the computation speed and matching accuracy. It directly

extracts information from the DICOM files, based on which to build up a patient-

specific phantom. It is composed of two steps described below.

First, the pixel images and scan protocol information are obtained from the DI-

COM files. DICOM stands for Digital Imaging and Communications in Medicine. It

is a generic, comprehensive standard for storing, handling and transmitting images

from a wide variety of medical modalities including CT, computed radiography,

magnetic resonance, ultrasound, radio fluoroscopy, etc. A DICOM file is an en-

coded binary file composed of a sequence of data elements following a common data

structure defined by the DICOM specifications (NEMA 1996) and briefly shown in

figure 2.8. The first component of the data structure is the “tag” that uniquely

identifies the data element. The tag comprises a group tag and an element tag,

both being presented as hexadecimal numbers. The second component is the “value

representation (VR)” that specifies the data type of the subsequent “value field”.

For instance, in figure 2.8 “IS” dictates that the data is stored as a string of char-

acters representing an integer in based-10; while “OW” dictates that the data is

a string of consecutive 16-bit words. The third component is the “value length”

that specifies the size of the subsequent “value field” in byte. The last component

“value field” contains the actual data associated with the CT scan. The value field

of (0018,1151) indicates that the applied X-Ray tube current is 425 mA, while the

value field of (7FE0,0010) contains the entire pixel data of the cross-sectional image.

In ARCHER, a DICOM decoding module was developed to carry out this particular

step.

Second, the CT numbers from the pixel images are transformed into element

weight and mass density data essential for MC simulation (Schneider et al. 2000).

Specifically, the CT numbers are first linearly converted to Hounsfield Units (HU)

according to the rescale slope and intercept values provided by DICOM. Then the
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Figure 2.8: DICOM data structure. This example shows two data ele-
ments, each consisting of a tag, value representation, value
length and value field. The value field of (0018,1151) spec-
ifies the intensity of X-Ray tube current, while that of
(7FE0,0010) specifies the pixel data array.

material type can be determined from a lookup table (table 2.2) where the scale

of HU is subdivided into 24 bins and each corresponds to a unique material with

elemental weights already pre-defined.

Table 2.2: Conversion of Hounsfield Unit into material type for Monte
Carlo simulation. Each material has a pre-defined list of ele-
mental weights (Schneider et al. 2000).

Hounsfield Units (HU) material

HU < −950 air

−950 ≤ HU < −120 lung

−120 ≤ HU ≤ −83 soft tissues type 1

−83 < HU ≤ −53 soft tissues type 2

−53 < HU ≤ −23 soft tissues type 3

−23 < HU ≤ 7 soft tissues type 4

7 < HU ≤ 18 soft tissues type 5
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Table 2.2: Continued.

Hounsfield Units (HU) material

18 < HU < 80 mean values of all tissues

80 ≤ HU < 120 connective tissue

120 ≤ HU < 200 skeletal tissues type 1

200 ≤ HU < 300 skeletal tissues type 2

300 ≤ HU < 400 skeletal tissues type 3

400 ≤ HU < 500 skeletal tissues type 4

500 ≤ HU < 600 skeletal tissues type 5

600 ≤ HU < 700 skeletal tissues type 6

700 ≤ HU < 800 skeletal tissues type 7

800 ≤ HU < 900 skeletal tissues type 8

900 ≤ HU < 1000 skeletal tissues type 9

1000 ≤ HU < 1100 skeletal tissues type 10

1100 ≤ HU < 1200 skeletal tissues type 11

1200 ≤ HU < 1300 skeletal tissues type 12

1300 ≤ HU < 1400 skeletal tissues type 13

1400 ≤ HU < 1500 skeletal tissues type 14

HU ≥ 1500 skeletal tissues type 15

The mass density can be determined likewise (table 2.3) with a different di-

vision of HU scale, and within each bin the density is presented as a continuous

function.

The above method is efficient in constructing a phantom that matches the

patient’s geometry within the scan region. However, two factors may affect the

accuracy of the dosimetric result. First, the geometry outside of the scan region

cannot be derived due to lack of data, and therefore the scattering dose may not be

accurately calculated, resulting in a systematic error. Ideally, this can be solved by

gluing parts of the existing voxelized phantom to the top and bottom of the new one

to generate a whole-body patient-specific phantom. Accurate spatial registration
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Table 2.3: Conversion of Hounsfield Unit into mass density for Monte
Carlo simulation. The mass density is a piecewise function
of HU and it is continuous within each bin (Schneider et al.
2000).

Hounsfield Units (HU) density

HU < −1024 ρ = 0.001293

−1024 ≤ HU < −98 ρ = 0.001003×HU + 1.028

−98 ≤ HU ≤ 14 ρ = 0.000893×HU + 1.018

14 < HU < 23 ρ = 1.03

23 ≤ HU ≤ 100 ρ = 0.001169×HU + 1.003

100 < HU < 1525 ρ = 0.000592×HU + 1.017

HU ≤ 1525 ρ = 1.92

will emerge as a new challenge. Second, Schneider et al. (2000)’s conversion method

itself does not produce perfectly accurate result, as large errors to the carbon and

oxygen weights were observed in their study. The work to improve the accuracy

based on these two known factors is beyond the scope of this research.

2.6 Software Development

2.6.1 General Flowchart of ARCHER for CT

The general flowchart of ARCHER running on this system is illustrated in

figure 2.2. For ARCHERGPU, the host first imports the patient and CT scanner

models as well as the photo-atomic interaction database to the host’s main memory,

then copies them to the device memory. According to the pre-specified CT scan

range, the computation task is divided into a sequence of independent batches.

Every batch simulates one scanner rotation where a pre-set number of X-ray photons

are tracked in parallel by many threads. Each thread possesses its local counters

to register doses from a number of photons assigned to that thread. The per-batch

organ doses, represented by Dk =
∑
i

yi,k where yi,k is the dose contribution from

the ith particle for the kth batch, are then derived from all the per-thread results
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by a global reduction operation and copied to the host for temporary storage. The

global reduction is realized by a highly optimized algorithm developed by Nvidia

(Harris 2011). To calculate the associated statistical uncertainties, another per-

batch quantities — the dose squares Tk =
∑
i

(y2
i,k) — are counted and summed up

in the same manner with Dk. After all the batches are simulated, the total organ

doses and the associated statistical uncertainties are calculated on the host. For K

batches and n particles per batch, the total relative standard deviation is calculated

by equation 2.19.

ν =

√√√√√
∑
k

Tk

(
∑
k

Dk)2
− 1

Kn
(2.19)

For ARCHERCPU and ARCHERCOP, the entire procedure mentioned above

is performed exclusively on the CPU and coprocessor, respectively. The global

reduction is performed by the built-in reduction functions provided by the MPI and

OpenMP programming models.

2.6.2 Development of ARCHERCPU for CT

The parallel CPU code is written in C using the MPI/OpenMP model. The

hyperthreading option of the CPU hardware is enabled. This setup ensures that all

the hardware resource is fully utilized to achieve the best performance. Compared

with the serial CPU code, the parallel one using 6 threads with hyperthreading

disabled is found to be 5.98 times faster, while the one using 12 threads with hy-

perthreading enabled is 8.78 times faster. In the former case the good scalability

on the processor level is attributed to multiple threads running simultaneously on

different cores, while in the latter case the additional speedup per core arises from

the fact that two threads still share the same hardware execution resource but the

memory access latency is efficiently hidden through thread switching.

2.6.3 Development of ARCHERGPU for CT

The GPU code was written in C using Nvidia’s CUDA paradigm. To improve

the performance, three issues were carefully considered: the memory usage, execu-
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tion configuration and concurrency. The GPU provides several types of memory

with different features for data storage. The constant memory is cached, fast but

very small. It was therefore used to store a group of physical constants such as

the Avogadro constant and elementary electric charge. A fraction of the constant

memory was also automatically used by the compiler to store the parameters passed

to the GPU kernel. The global memory is slow but large. In addition, it is cached

since the advent of Fermi-generation GPU. It was therefore used to hold the large

cross-section tables, the phantom and the dose tally data. The texture memory

is a special type of global memory. It has a dedicated texture cache and provides

hardware filtering that performs linear interpolation in the process of texture fetch-

ing (i.e. when the texture memory is read). It was used to store and interpolate

the scattering angle tables mentioned in section 2.3. Specifically, the tables were

bound to a special form of texture memory called the “layered texture”. Each layer

contained a 2-D table for a certain material, where each row of that table contained

a series of the scatter angle cosine s at a certain energy. To sample µ, first the

material index i (the texture layer index) and the energy indices j, j + 1 (the in-

dices of two adjacent rows of µs) were determined. Then the indices of two adjacent

columns of µs k, k + 1 were sampled to determine which four µs to be used for the

bilinear interpolation, which was finally performed by the texture hardware. The

shared memory is fast but very small. It was thus only used in the global reduction

process to pre-load the dose data from the global memory (Harris 2011). Another

type of memory used was the per-SM L1 cache, which was effectively optimized in

two ways. First, its size was set through CUDA API to the largest value, 48 KB per

SM. Second, its behavior was changed through the compiler option to benefit the

global memory access. On the Kepler GPU, it is by default only reserved for the

access of local memory, a compiler managed memory to store per-thread data that

are too large to fit the registers. The performance of some of the GPUs such as K40

can be improved by forcing it to cache both the local and global memory load —

which is in fact the default behavior of the Fermi GPU — using the compiler option

“-Xptxas -dlcm=ca” (Nvidia. 2013d).

The execution configuration encompasses the specification of proper numbers
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of threads per block T and blocks per grid B, as well as the proper setup of the

GPU hardware. In ARCHERGPU, each thread is assigned a maximum of m photons

to be simulated one by one in sequence. The lower limit of m is achieved when

the number of threads is maximized such that the total size of dose counters are

equal to the GPU memory capacity; the upper limit is achieved when the number

of threads is minimized such that the GPU achieved occupancy is still sufficiently

large, i.e. all the SMs are still busy. For instance, for the simulation of a batch of

107 photons and 44 dose tallies on the K40 GPU with 12 GB memory (11.519 GB

effective memory for users after ECC is enabled), if each thread only simulates 1

photon, the total memory usage will be:

44× 2× 4× 107

1024× 1024× 1024
= 3.3 GB

Here “2” refers to the fact that two copies of dose counters are needed: one to

count the per-particle dose, the other is to accumulate this per-particle count, and

“4” means four bytes due to single-precision floating point. The result is smaller

than the amount of effective memory, hence mmin = 1. Furthermore, the minimum

number of threads that narrowly saturates the GPU is:

64× 32× 15× 44% = 13516.8

Here “64” is the maximum number of warps per SM, “32” is the number

of threads per warp, “15” is the number of SMs per GPU, and “44%” is the GPU

occupancy evaluated by the CUDA occupancy spreadsheet (Nvidia. 2013c) and con-

firmed by the profiler (Nvidia. 2013g). Therefore mmax = 107/13516.8 ≈ 739. We set

m = 100 in our simulations as an appropriate choice. The total number of threads

t was then n/m, where n is the total number of histories per batch. The number

of blocks per grid T was derived from the occupancy spreadsheet (Nvidia. 2013c).

The GPU code was compiled with “-Xptxas -v” to obtain the register usage per

thread, with which to query the spreadsheet for a proper value of B that maximized

the GPU occupancy (the value was 30% ∼ 40%). In our case T = 64 or 128 was

optimal on both the Fermi and Kepler GPUs. It follows that the number of blocks
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per grid B was t/T . The GPU hardware was configured through the management

tool “nvidia-smi” (Nvidia. 2013f). The “persistent mode” was turned on to greatly

reduce the time spent on loading the GPU driver. Moreover, a function called GPU

boost (Nvidia. 2013d) specific to the K40 GPU was enabled, which increases the

clock frequency while keeping the power draw below the upper limit.

The third consideration is the concurrency, referring generally to the ability of

a system to perform multiple operations simultaneously (Rennich 2011). Three types

of concurrency were investigated: the single GPU stream concurrency, the multiple

GPU concurrency and the CPU-GPU concurrency. One a single GPU, because of

the random nature of MC simulations, different blocks tend to take different time to

complete their jobs. When the simulation is nearing its end, the resident blocks may

not suffice to saturate the hardware, leading to a decrease in the GPU occupancy.

For a simulation consisting of a sequence of batches, the period of low occupancy

can be accumulated to negatively affect the overall GPU performance. This problem

can be effectively solved by using the GPU stream. A stream refers to a sequence of

commands that execute in order; multiple streams may run concurrently (Nvidia.

2013b). We attached different GPU kernels to separate streams, so that when one

kernel on a stream was about to finish and did not fully occupy the hardware re-

source, kernels on other streams could automatically step in and consume the rest

of the resource. The second type of concurrency refers to the simultaneous execu-

tion of multiple GPUs. Because CT dose calculations are embarrassingly parallel,

meaning the threads are executing independently of one another without intensive

communications, the multiple-GPU implementation is expected to bring good scal-

ability. We used one CPU thread to control multiple GPUs, and copied the data

to and from different GPUs through asynchronous memory operations. A unique

seed was assigned to each GPU to generate independent, statistically uncorrelated

random number sequences. For a total of K batches, M GPUs and S streams, each

GPU was given K/M batches that were organized into K/(MS) iterations, and

each iteration involved the concurrent execution of S batches. The third type of

concurrency arises from the heterogeneous computation by the CPU and the GPU.

These two computing units adopt an asynchronous execution mode in the sense that
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once the GPU kernels are launched the control is immediately returned to the CPU,

and that the CPU remains idle before hitting an explicitly specified synchronization

point. To use the untapped multi-core CPU resource and improve the overall sys-

tem performance, a CPU MC code written in OpenMP was executed right after the

GPU kernel launch. One important issue is to balance the workload between the

CPU and GPU such that they finish the computation at approximately the same

point. Currently a simplistic method was adopted. For a given pair of CPU and

GPU model, a standard MC test — simulation of a whole-body axial scan over the

RPI-Adult Male phantom using 9 × 108 photons — was first performed to derive

the speedup factor ηP , defined as the ratio of the number of particles simulated by

the GPU per second to that by the CPU. Then for K batches, M GPUs and 1

CPU, the simulation was organized into K/(Mη̃P + 1) iterations, where η̃P denotes

the rounding of ηP to the nearest integer. In each iteration, the CPU simulated one

batch, while each GPU simulated η̃P batches using η̃P concurrent streams (Liu et al.

2014a).

2.6.4 Development of ARCHERCOP for CT

The coprocessor code was the same with the CPU code, written in C using

the MPI/OpenMP model. The three factors described in section 2.6.3 also apply to

the coprocessor code. The problem pertaining to memory usage is simpler, mainly

because the coprocessor exposes to users a uniform type of memory to store all the

input and output data. To reduce the memory allocation cost, the memory page size

was explicitly tuned up from 4 KB to 2 MB using a dedicated “huge page” library

(Intel. 2013a). With regard to the execution configuration, we let the coprocessor

work in the native execution mode (Intel. 2013e), whereby the executable file, input

data and MPI/OpenMP libraries were manually uploaded to the coprocessor, and

then the entire code including both the serial and parallel parts was run on it. We

issued a total of 60 processes and pinned them to 60 physical cores correspondingly,

each having 4 threads bound to the 4 logical cores (i.e. hardware thread). Because

the coprocessor did not have the occupancy problem, the task distribution was more

straightforward: the photons in a batch were evenly distributed among the all the
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60 processes and then among the 4 threads within each process. The concurrency of

the CPU and coprocessor was conveniently obtained by using Intel’s MPI manage-

ment tool (Intel. 2014). The CPU-only and coprocessor-only codes were separately

compiled, then launched simultaneously by the MPI tool that implicitly took care

of the data transfer. The workload was balanced by evenly distributing the photons

in a batch among a bunch of processes, and assigning different numbers of processes

to the host and device. Specifically, the same standard MC test mentioned above

was performed to determine the speedup factor ηP . Since the coprocessor was given

60 processes, the CPU was assigned 60/ηP processes as the appropriate amount of

workload.

It should be emphasized that the Intel Xeon Phi coprocessor is best known

for its distinctive vector feature, i.e. each core has a vector processing unit (VPU)

with 512-bit wide registers for the single instruction multiple data (SIMD) opera-

tions (Intel. 2013e). However, the conventional history-based MC algorithm adopted

in ARCHER has many conditional branches and scattered memory accesses, mak-

ing it difficult to directly benefit from that feature. There was very limited room

for vectorization. One was to rely on the compiler-driven automatic vectorization.

The other was the manual vectorization by adding the compiler directives, such as

“#pragma ivdep” to those loop structures that did not have data dependencies.

Both methods only applied to several inner for-loops in the MC transport kernel

and did not lead to appreciable performance improvement (Liu et al. 2014a).

2.6.5 Development Tools

This section describes the software tools used in the development and test of

ARCHER. They fall into four major categories with distinct functions: compiling,

scripting, documenting and version controlling.

Firstly, the compiler is in general used to process the source codes in plain text

and produce the machine codes in the form of object files. It can also act as a linker

by combining all pieces of object files together to generate a working executable file.

The set of compilers with which different variants of ARCHER are developed are

shown in table 2.4.



47

Table 2.4: Compilers used to generate different variants of ARCHER.

platform code compiler

CPU serial, openmp g++

MPI mpicxx

host g++
GPU

device nvcc

coprocessor serial, openmp, MPI mpiicpc

g++ is an open-source C++ compiler from the GNU Compiler Collection

(GCC) family developed in the GNU Project (Stallman 2003). For ARCHERCPU,

it compiles the serial and multithreaded CPU code. For ARCHERGPU, it compiles

the host CPU code and links the object files generated from the host and device.

mpicxx is an open-source MPI C++ wrapper coming from the MPI Chameleon 2

(MPICH2) implementation (Gropp 2002). It passes the CPU code of ARCHERCPU

to the back-end compiler to be processed, in our case, g++, and links the resulting

object files to MPI libraries to generate the MPI executable file. nvcc is a proprietary

CUDA compiler developed by Nvidia (Nvidia. 2013e). It compiles the device codes

of ARCHERGPU into the object files with GPU-unique format called fat binary,

which later are linked by g++ to the host object files. mpiicpc is a proprietary MPI

C++ compiler developed by Intel (Intel. 2013b). The way mpiicpc works is very

similar to mpicxx, in that it serves as a front-end by passing the coprocessor code of

ARCHERCOP to the internal compiling tool, icpc, and performing linkage to enable

MPI functions.

Secondly, script interpreter imports and executes user’s commands stored in

the script as plain text. Table 2.5 listed all such interpreters used in this research

for a variety of purposes.

The Make (Stallman et al. 2013) utility serves as a fundamental and flexible

platform for source code compilation. On this platform, users explicitly describe the

dependency relationships between the source code, intermediate files (such as the
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Table 2.5: Script interpreter used for a variety of purposes.

language purpose

Make build ARCHER executable from the source code

organize batch runs in Linux
Bash

organize the profiling of ARCHER

Batch organize batch runs in Windows

prepare photo-atomic data

Python analyze the result of MC simulations and performance
profiling

prepare phantom data
Matlab

visualize dosimetric data

object files) and executable file, from which the executable file is elegantly generated.

Besides, on the occasion that changes are applied to some of the source files, Make

is able to identify them and determine which intermediate files needs to be updated,

instead of unnecessarily recompiling all the source files from the very beginning,

thus increasing the compilation efficiency. The Bash (Ramey & Fox 2010) and

Batch (Shammas 1993, pp. 1–20) utilities are chiefly used to organize batch runs,

which is commonly seen when ARCHER is tested under a combination of different

conditions, such as different beam collimations, different kVps, different bowtie filter

types, different phantoms, etc. Such test requires a large number of simulation

jobs that would collectively take a long time to complete. With Bash and Batch,

these jobs can be orderly performed in sequence on one device, or simultaneously

on multiple devices to achieve the job-level parallelism. Bash is also extensively

used to organize the profiling of the GPU and coprocessor codes for performance

analysis. The Python (van Rossum 2014) and Matlab (MathWorks. 1996) utilities

significantly facilitates data processing that occurs prior to or subsequent to MC

simulation, such as input data preparation and output data visualization.

Thirdly, the documentation generator Doxygen (van Heesch 2008) is used to

clearly and conveniently document the source code and create user’s and developer’s
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guide in HyperText Markup Language (HTML) (Berners-Lee & Connolly 1995)

format.

Fourthly, the version control system Git (Chacon 2009) is adopted to manage

and maintain the source code, which includes reviewing the changes made over time,

reverting the code to a previous state, merging the separately developed modules

with the previous stable release, etc.

2.6.6 Fair Comparison Considerations

To ensure a fair performance comparison across the three ARCHER variants,

the following items have been considered.

• The code is sufficiently parallelized to fully utilize the hardware resource. This

is guaranteed by the parallel programming model and the hyperthread CPU

function for the CPU code, the stream implementation and carefully deter-

mined execution configurations for the GPU code, and the adequate amount

of processes and threads for the coprocessor code.

• Error-Correcting Code (ECC) is enabled on the GPU and coprocessor. Al-

though it reduces the memory size and memory bandwidth, the ECC increases

the hardware reliability when running a large amount of jobs for a long period

of time.

• The same pseudo-random number generators Xorshift are used in all the codes.

• All the codes are highly optimized by applying appropriate compiler options.

For example, all are compiled with a high optimization level of -O3. Another

example is that to improve the performance, some floating operations are

replaced by their faster and less accurate surrogates, realized by the compiler

options (Stallman 2003, Nvidia. 2013e, Intel. 2013b) summarized in table 2.6.

The third example is that all have their unique platform-specific compiler

options turned on, summarized in table 2.7.
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Table 2.6: Compiler options for fast floating point operations.

code compiler option

ARCHERCPU -ffast-math

-use fast math
ARCHERGPU

-fp-model fast=2, -no-prec-div,

ARCHERCOP -no-prec-sqrt, -fast-transcendentals

Table 2.7: Platform-unique compiler options.

code compiler option

ARCHERCPU -march=native

-gencode=arch=compute_35,"
ARCHERGPU

code=\"sm_35,compute_35\"

ARCHERCOP -ipo

2.7 Verification and Validation

2.7.1 Terminology

Although very commonly used, the terminology of verification and validation is

not standardized, and needs to be clearly specified (Kleijnen 1995). In this research,

we adopt the definition by MCNP6 development team (Pelowitz 2013b). According

to this definition (Pelowitz 2013a), verification is a test of the “functionality”. It

is “generally performed by code developers,” and it “involves performing a series of

calculations to determine whether a code faithfully solves the equations and physi-

cal models it was designed to solve. “Verification may involve comparison to other

codes, to analytic benchmarks, or to experiments.” In contrast (Pelowitz 2013a),

validation is a test of the “suitability”. It is “generally performed by end users,”

and it “involves a determination of whether the code sufficiently reproduces reality

for a particular range of applications of interest.”. “Validation may involve assess-
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ing the verification problems (to ensure that the end-user application is bounded),

comparing calculations to relevant experiments, or performance of scoping studies

(to ensure that parameter changes produce expected changes in results).”

In this research, ARCHER as a special-purpose simulation tool has two com-

ponents. One is the photon transport model developed from scratch according to

the theories of photoatomic interactions and Monte Carlo methods. The correctness

of this component is what we have aimed to guarantee, and can be tested by com-

paring ARCHER with a standard code under exactly the same geometry conditions.

This test, according to the definition, is a form of verification. The other compo-

nent of ARCHER is the achievement from previous studies: the built-in CT scanner

model (Gu et al. 2009, Gu 2010), and the internal algorithm to generate appropriate

computational human phantom from the DICOM images (Schneider et al. 2000).

The correctness of this component is examined by comparing ARCHER’s simula-

tions with experimental measurements. This test showcases how far the simulation

is from the reality, and can be regarded as a form of validation. This classification is

appropriate, considering the way MCNP6 differentiates between the shielding val-

idation (simulations versus experiments) and shield verification (the new MCNP6

code versus the previously validated and verified MCNP5 code) (Pelowitz 2013a).

2.7.2 Verification of ARCHER for CT with MCNPX

ARCHER is verified against the production code MCNPX version 2.5.0 in

four cases of organ dose calculations. These cases use the same scan protocols,

including whole-body axial scan, 120 kVp, a pitch value of 1:1, but use different

computational human phantoms with different anatomies, including the 73 kg RPI

adult male phantom, 142 kg RPI adult male phantom, 122 kg RPI adult female

phantom and RPI 9-month pregnant female phantom. For each batch (one scanner

rotation) 107 photons are simulated. The number of batches is K = h/b, where h

is the height of the phantom and b is the beam collimation. The total number of

photons of all batches is sufficiently large to reduce the relative standard deviation

to ∼0.5% for both ARCHER and MCNP. Information on the phantom geometry is

summarized in table 2.8.
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Table 2.8: Geometric information of the phantoms used in ARCHER ver-
ification. The number of subregions refers to that of the seg-
mented organs/tissues for a given phantom, i.e. the number
of “universes” used when the phantom was originally defined
in MCNP code.

case voxel dimension [mm3] voxel number
number
of subre-
gions

73 kg RPI adult male
phantom

0.35 × 0.35 × 0.35 114 × 93 × 509 128

142 kg RPI adult male
phantom

0.35 × 0.35 × 0.35 135 × 132 × 509 128

122 kg RPI adult female
phantom

0.35 × 0.35 × 0.35 136 × 133 × 469 128

RPI 9-month pregnant
female

0.3 × 0.3 × 0.3 187 × 142 × 545 36

To make the physics models of the two codes consistent, for MCNPX the

electron transport is turned off and only the photon transport is simulated (Liu

et al. 2014a).

2.7.3 Validation of ARCHER for CT with Experiment

ARCHER is validated with the experimental measurements in point dose cal-

culations. The validation encompasses two cases, a helical scan over a human ca-

daver and the ATOM physical phantom respectively, shown in figure 2.9. The

scanning was performed by a team of experienced medical doctors, radiologists and

physicists at the Massachusetts General Hospital (MGH). In the cadaver study, the

human subject was acquired from a non-profit entity Science Care (Zhang et al.

2014). It was an 88 years old male, 183 cm in height and 67.5 kg in weight, died

from natural causes (Zhang et al. 2014). Six Thimble chamber dosimeters (Model

10×5-0.6CT and 10×6-0.6CT)) were used to measure the absorbed dose in differ-

ent deep and superficial organs. They were 21 mm in length and had 0.6 cm3

active volume (Zhang et al. 2014). The cross-calibration showed that under the
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Figure 2.9: CT scan simulations in cadaver (left) and ATOM physical
phantom (right) study. The helix around the phantom rep-
resents scanner trajectory. This image is generated using the
visualization software Paraview (Paraview. 2014).

same kVp, the response from different dosimeters varied within 5%, and that for

the same dosimeter, the response under different kVps varied within 0.5% (Zhang

et al. 2014). The dosimeters were placed in or next to six organs through surgi-

cal procedures (Zhang et al. 2014). These organs included liver, stomach, colon,

urinary bladder, left kidney, and paravertebral gutter (Zhang et al. 2014). Several

scans were performed over the cadaver using different protocols. Among them, two

realistic clinical scan protocols were later simulated. Their similarities included the

helical abdomen/pelvis scan, 1 second rotation time, a pitch value of 1.375:1, 16 ×
1.25 mm beam collimation, body-type bowtie filter, a fixed 300 mAs, whereas their

difference was the respective kVps — 120 and 100 (Zhang et al. 2014). In addi-

tion, a whole-body scan was performed to help construct a complete computational

phantom (Zhang et al. 2014). Without it, the scattering dose coming from outside

of the scan region in the abdomen/pelvis scan would be neglected, leading to an

undesirable dose underestimate.

The direct output data from the experiment are the slice-by-slice reconstructed

CT images in the DICOM format mentioned in section 2.5.3. Medical physicists and

radiologists at MGH developed semi-automatic algorithms to remove the artifacts
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from the images caused by the metal component of the dosimeters. They also com-

putationally determined the exact coordinate of the active volume of the dosimeters

from the images.

The DICOM images provided all other scan information that enabled the

Monte Carlo simulations. The whole-body CT image data were directly converted

into a computational phantom using the procedure mentioned in section 2.5.3.

The DICOM tags “trigger on position (0043,1040)” and “duration of X-ray on

(0043,104E)” from the abdomen/pelvis scan data were extracted to determine the

starting location of the X-ray tube in the x-y plane and the entire scan region along

the z direction (including the overscan). The starting location of the X-ray tube in

the z direction was determined by image registration for the whole-body and the

abdomen/pelvis image data. In the Monte Carlo simulation, the absorbed doses to

six 0.49×0.49×0.5 cm3 boxes around the dosimeters’ active volume were calculated

as an estimate of the point dose.

The validation using the ATOM phantom adopted a different approach. The

optically stimulated luminescence (OSL) dosimeters were used. The coordinates of

the dosimeters were determined from the cross-section photographs of the physical

phantom that can be assembled slice by slice. The scan protocols included the helical

chest scan, 120 kVp, a pitch value of 0.938:1, 16 × 1.25 mm beam collimation, and

a combination of angular and longitudinal tube current modulation (TCM). An

existing computational phantom was directly used. In the Monte Carlo simulation,

doses to several 1.4×1.4×1.8 cm3 boxes around the dosimeters were calculated. (Gao

et al. 2013)

For both validation tests, the Monte Carlo simulations were performed on

the Nvidia K40c GPU. The raw results with a unit of MeV/g were converted into

mGy/100mAs using the conversion factors obtained in our previous study (Ding

2012) in order to compare with the experimental values (Liu et al. 2014).
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2.8 Performance Analysis

2.8.1 Computing Efficiency

2.8.1.1 Performance Comparison of Different Codes

Computing efficiency of different parallel Monte Carlo codes on different hard-

ware platforms is evaluated using a common simulation task — a whole-body axial

scan over the 73 kg RPI adult male phantom under 120 kVp and a pitch value of

1:1. A total of 9×108 photons are simulated (90 batches, 107 photons per batch) to

restrict the relative standard deviation to ∼0.5% for both ARCHER and MCNP. A

scalar quantity — speedup factor is defined in equation 2.20 to facilitate the com-

parison, where ηdP is the speedup factor of computing unit d relative to the CPU, N

is the floating-point operations count (or equivalently, the number of photons in the

simulation) that has been cancelled out, and tc and td are the time of the benchmark

test taken by the CPU and the computing unit d, respectively.

ηdP =
N
td
N
tc

=
tc
td

(2.20)

2.8.1.2 Performance Comparison with Contemporary Study

The similarity between this research and Chen et al. (2012)’s work in the as-

pect of GPU-based CT dose distribution calculations allows us to perform a cross-

study comparison as an alternative way to evaluate the computing efficiency of

ARCHERGPU. Chen et al. (2012) simulated a CT scan using phantoms with three

different spatial resolutions, and listed the corresponding voxel dimensions, number

of voxels, number of photons and computation time. According to these data, we

modify the dimensions of our abdomen phantom and run the Monte Carlo simu-

lations under similar geometry conditions. Besides, to keep the hardware similar,

we choose the Tesla M2090 GPU (ECC on) with a theoretical peak performance of

1331 GFLOPS to compete with the GeForce GTX 285 GPU (without ECC support)

with 1063 GFLOPS used by Chen et al. (2012). Considering the fact that the ECC

mode negatively affects the GPU performance, it is safe to assume the two GPUs

have approximately the same computing power (Liu et al. 2014a).
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2.8.2 Energy Efficiency

Apart from the computation performance, the energy efficiency is another

critical factor, because it is directly associated with the total operating cost and

environmental impact of a computing platform. In this study it is evaluated by

running a standardized Monte Carlo test on different platforms. The test simulates

a single-rotation axial scan over the abdomen region of the 73 kg adult male phan-

tom. It should be pointed out that here we specifically focus on calculating the

energy efficiency of each computing hardware for the parallel Monte Carlo trans-

port subroutine alone, and neglect the energy consumption by the serial portion of

ARCHER code such as the File I/O and data pre-processing, and by other hardware

components such as the system memory and cooling device. Besides, the energy con-

sumption by the idle CPU when the GPU or coprocessor is being tested is ignored.

Accurate measurement of the overall system power draw for the whole run is of

equal importance and can be done by directly connecting the server to the external

power meters, but this is beyond the scope of discussion here.

Currently there has not been a commonly accepted and adopted metric for

energy efficiency quantifications. Thus several quantities as follows are investigated

together (Liu et al. 2014a).

• Power The power is defined as the energy per unit of time, a measure of instan-

taneous energy consumption. We used the platform-specific, software-based

monitoring tools to poll the hardware and sample the power at regular intervals

while ARCHER is running. The GPU platform provides two command-line

utilities to do that. One is nvidia-smi (Nvidia. 2013f) for GPU hardware ad-

ministration, and the other is nvprof (Nvidia. 2013g) for GPU code profiling.

We chose nvidia-smi instead of nvprof, because the latter appears to be more

intrusive to the GPU and can cause a slight power overestimate. The copro-

cessor platform also provides two utilities. One is micsmc (Intel. 2013g) to

log the performance, temperatures, and core usage of the coprocessor. The

other is the Performance Application Programming Interface (PAPI) (Don-

garra 2013). We adopted micsmc rather than PAPI, since the latter has a

low time resolution on the order of second only. Currently our CPU platform
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based on the Westmere microarchitecture lacks an effective software solution

for power monitoring. Therefore we use the benchmark result provided by

SPEC. (2014) as a legitimate power estimate — 129 Watts for 100% CPU

utilization and 40 Watts for the idle CPU.

On the other hand, according to Hennessy & Patterson (2012), the peak power

is often 1.5 times higher than the Thermal Design Power (TDP). It is thus

justifiable to use TDP directly as the CPU power estimate, which will lead to a

conservative comparison of the energy efficiencies of the hardware accelerators

and the CPU.

• Energy This metric reflects the total energy demand of the computing unit for

a given task, regardless of its performance. It was calculated by integrating

the sampled power data over time.

• FLOPS per Watt The FLoating-point Operations Per Second (FLOPS) is a

measure of the performance of a given computing unit, widely adopted by

the high performance computing industry, including Top500. (2013). The

FLOPS per Watt metric takes the power issue into account, and is adopted

by Green500. (2013) as an essential index of energy efficiency. In this study,

the FLOPS of 32-bit single precision was measured using the GPU profiling

tool nvprof (Nvidia. 2013g), and the average power is calculated by dividing

the total energy consumption by the computing time. Due to lack of software

tools, the GPU’s FLOPS was used as a rough approximation to that of the

CPU and coprocessor. Note that despite the use of FLOPS as a factor, this

metric in fact does not reflect the platform performance, as is explained in

equation 2.21, where ηE is FLOPS per Watt, R is the FLOPS, P is the power,

N is the floating-point operations count, E is the energy consumption, and t

is the time of the benchmark test that has been cancelled out.

ηE =
R

P
=

N
t
E
t

=
N

E
(2.21)

A computing unit that takes a long time to finish a given task but consumes
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a little energy may still have high FLOPS per Watt, although such hardware

device is hardly of practical value. It follows that the computing performance

and FLOPS per Watt are two separate factors, both of which should be con-

sidered when evaluating the efficacy of a computing platform.

2.8.3 Cost Effectiveness

While the computing and energy efficiency of a computing platform are two or-

thogonal, important considerations, they both boil down to economy: high computing-

efficiency amounts to high productivity and profit, while high energy-efficiency to low

electricity expense. Ultimately, an economy-related, unified factor is almost always

desired to assist with the buying decision process. Here we establish a simplistic cost

model for our heterogeneous computing system. For a single 4U rackmount server,

we define the cumulative cost C(t) in unit of US dollar ($) in equation 2.22, where

Cu(t) is the cost unique to the given computing unit (the CPU, GPU, coprocessor,

etc), and Cs(t) is all the cost other than the computing unit.C(t) = Cs(t) + Cu(t)

Ci(t) = CCA
i (0) + COP

i (t), i = s, u
(2.22)

Both Cs(t) and Cu(t) contain two parts, where CCA
i (0) refers to the capital

cost, i.e. the one-time expenses on the equipment purchase, and COP
i (t) refers to

the operating cost, i.e. the continuous expenses on the server operations. The

breakdown of each component is enumerated as follows.

• CCA
s (0) Chassis, motherboard, power supply, cooling device (fan), chipset,

memory, hard drive, software (operating system, development kit), site infras-

tructure, others.

• COP
s (t) Electricity (consumed by all the devices other than the computing

unit), network, labor (unrelated to the computing unit), others.

• CCA
u (0) Computing unit.
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• COP
u (t) Electricity (consumed by the computing unit), labor (related to the

computing unit, such as code porting, staff training).

It should be noted that Cs(t) may be similar to or well larger than Cu(t).

Consequently, it may undesirably obfuscate our comparison between various parallel

computing platforms, where the difference lies only in the computing unit alone.

Thus we argue that for the simplicity and clarity of cost analysis, only Cu(t) needs

to be taken into account. We herein define a scalar quantity called normalized cost

effectiveness factor in equation 2.23 to carry out this analysis, where ηdC(t) refers

to the normalized cost effectiveness factor for the computing unit d, ηP denotes the

speedup factor in section 2.8.1.1, and Cc
u(t) and Cd

u( t
ηP

) are the cost unique to the

CPU and the computing unit d, respectively.

ηdC(t) = ηP ·
Cc
u(t)

Cd
u( t

ηP
)

= ηP ·
CCA,c
u (0) + COP,c

u (t)

CCA,d
u (0) + COP,d

u ( t
ηP

)

(2.23)

Note that the computing unit d with a speedup factor of ηP can effectively

reduce the computation time from t (referring specifically to the CPU wall time) to

t
ηP

. Hence for a fixed amount of computation task, the operating cost can also be

reduced accordingly. Further simplifications to equation 2.23 are necessary, due to

the unavailability of the labor cost data for this study. It is thus assumed that the

operating cost only comprises the electricity component, and the following approx-

imation is obtained in equation 2.24, where κ denotes the electricity rate in unit of

dollars per Joule, Pc and Pd refer to the average power draw derived by the method

in section 2.8.2.

ηdC(t) = ηP ·
CCA,c
u (0) + κPct

CCA,d
u (0) + κPd

t
ηP

(2.24)

2.8.4 Profiling

To investigate and understand whether ARCHERGPU has exploited the full

potential of the GPU hardware, additional performance analysis is conducted. The

instruction and the memory statistics are gathered by the GPU profiler “nvprof”
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(Nvidia. 2013g) for the K40 GPU without using the boost function. The computing

task is the simulation of a single axial scan over the RPI-Adult Male 73kg phantom

in the abdomen region — 1 single batch with 1 × 107 photons. This amount of

computing task is appropriate such that it fully saturates the GPU resource while

it does not overflow the hardware counters.

2.9 Clinical Applications

The performance of ARCHERGPU is assessed in a clinical case at Massachusetts

General Hospital (MGH). ARCHERGPU was used to simulate an abdominal scan

over a patient stricken with prostate cancer and calculate the 3-D absorbed dose

distribution. i.e. the absorbed dose to each voxel is separately quantified. The

scan protocol included a helical scan mode, 120 kVp tube voltage, 250 mAs per

rotation, 16×1.25 mm beam collimation and a pitch value of 1.375:1. A radiation

oncologist outlined the tumor target (prostate) and the structures in its vicinity

(rectum, bladder and femoral head) on the CT images. The stack of images were

then converted into voxelized abdomen phantom for Monte Carlo dose calculations

(Ding et al. 2010). The phantom has 218×126×60 voxels with voxel dimensions

of 0.1954×0.1954×0.5 cm3. A total of 108 photons were simulated in the dose

distribution calculation, which is sufficient to make the statistical uncertainty below

1% in the case of organ dose calculation (Liu et al. 2014a).



CHAPTER 3

RESULTS AND DISCUSSION

“We can only see a short distance ahead, but we can see plenty there that

needs to be done.”

—Turing, Alan

This chapter presents the results of ARCHER development. Section 3.1 demon-

strates how much ARCHER is consistent with the production code MCNPX in the

verification tests, discusses how different summation strategies impact the accuracy

of the GPU code, and illustrates the degree of agreement between the simulated and

the realistic geometry models of ARHCER in the validation tests. In section 3.2,

the computing and energy efficiency of different parallel Monte Carlo codes on dif-

ferent hardware platforms is compared, accentuating the performance advantage of

the hardware accelerators. Finally, section 3.3 shows the preliminary performance

result of applying ARCHER to a clinical CT dosimetry case.

3.1 Verification and Validation

3.1.1 Verification of ARCHER for CT with MCNPX

ARCHER is verified against MCNPX version 2.5.0 in organ dose calculations

using four different heterogeneous phantoms. Sufficiently many particles are simu-

lated to ensure that the relative standard deviation is restricted to 0.5% for both

Portions of this chapter previously appeared as: Liu, T., Ji, W. & Xu, X. G. (2013), Devel-
opment of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi
architecture, in ‘International Conference on Mathematics and Computational Methods Applied
to Nuclear Science & Engineering (M&C 2013)’, Sun Valley, ID, pp. 1199-1210.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).
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ARCHER and MCNPX. The results of three ARCHER variants only have negligible

differences primarily caused by different number of threads used at runtime. Thus

for brevity here we only demonstrate the results from ARCHERGPU. The data are

listed in appendix A. The statistical information is summarized in table 3.1. This

level of agreement between ARCHER and MCNPX is considered excellent in the

CT dose calculations.

The slight difference between the results by ARCHER and by MCNPX is

attributed to four factors. First, the pseudo-random number generators are dif-

ferent. MCNPX adopts Lehmer 48-bit linear congruential generator(LCG) (X-5

Monte Carlo Team 2003a,b), while ARCHER uses the 32-bit Xorshift generator

(Nvidia. 2012). Second, MCNPX models the Doppler broadening effect and the

X-ray fluorescence for 12 ≤ Z ≤ 30, while ARCHER does not. This is the only

difference between the interaction models of the two codes. Third, for efficiency con-

sideration, ARCHER replaces on-the-fly calculations with linear interpolation from

lookup tables in several subroutines, such as the calculation of fictitious macroscopic

cross-section and the incoherent/coherent scattering polar angle. The interpolation

errors may affect the results. Fourth, ARCHER uses the single-precision floating

point while MCNPX uses the double-precision (Liu et al. 2014a).

One important factor associated specifically with the accuracy of ARCHERGPU

is the way to collect the dose results from each individual thread and sum them up

to get a final answer. As is mentioned in 2.4, both atomic and parallel summation

methods have their particular advantages over each other. For the former method,

however, as the problem size scales up, the numerical error can become increasingly

noticeable, as illustrated in figure 3.1. In this test case, the 73 kg RPI adult male

phantom is used, and dose to the red bone marrow from a single axial scan around

the abdominal region is calculated. Using the single-precision floating point format,

the atomic summation gradually fails after the number of photons exceeds 108, the

result being smaller than the true value. This deviation is due to the fact that as the

sum becomes larger, more and more low-order digits of a small floating point number

added to it are discarded. In contrast, the result obtained by parallel summation

maintains good consistency, being less than 0.4% different from MCNPX. In this
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Table 3.1: Comparison of the dosimetric results calculated by ARCHER
and MCNP in terms of the percentage difference, defined as
|ARCHER−MCNP|/MCNP. The absolute value is used to
avoid an overestimate of the accuracy where the positive and
negative differences accidentally cancel out.

case
total number
of photons
simulated

maximum
difference
[%]

minimum
difference
[%]

average
difference
[%]

73 kg RPI adult
male phantom

9× 108 0.87 0.03 0.29

142 kg RPI adult
male phantom

9× 108 1.67 0.01 0.31

122 kg RPI adult
female phantom

8.3× 108 1.03 0.00 0.42

RPI 9-month
pregnant female

8.2× 108 1.92 0.04 0.37

method, which is based on the classic pairwise summation, the two floating pointer

numbers added together are generally not several orders of magnitude different;

hence a smaller numerical error (Liu et al. 2013).

In theory, numerical errors due to the atomic operation can be removed by

using the double precision floating point arithmetic. Currently, 64-bit floating point

atomic addition is not directly supported by CUDA GPUs. Nvidia proposed a

compare-and-swap algorithm that emulates the double precision arithmetic (Nvidia.

2013b). This emulation method, however, considerably reduces the overall compu-

tational performance and is not feasible in fast dose calculations (Liu et al. 2013).

3.1.2 Validation of ARCHER for CT with Experiment

The results of the dosimetric comparison are shown in figure 3.2, table 3.2

and table 3.3. The relative standard deviation (RSD) in the experiment is 5%

according to the manufacture-provided data (Radcal. 2014) for the cadaver case,

and is calculated from multiple OSL dosimeter readings for the ATOM phantom

case, while that in the Monte Carlo simulation is the statistical uncertainty of the
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Figure 3.1: The influence of parallel and atomic summation methods over
the accuracy of ARCHERGPU in organ dose calculations.
This test simulates a single axial scan over the abdominal
region using the 73 kg RPI adult male phantom.

mean values. It is found from the output DICOM files that even if scan protocols

are kept exactly the same, the X-ray tube starting position (“trigger on position

(0043,1040)”) in the three measurements is always a random value, annotated in

the figure 3.2. The dose difference in the cadaver and ATOM case is within 29%

and 40%, respectively. It should be pointed out that the experimental measurement

of the dose to the esophagus in the ATOM phantom case is very unreliable, because

firstly, only 1 OSL dosimeter was planted in the very beginning slice of ATOM

phantom in the experiment, secondly that slice was not completely covered by one

scanner rotation, and thirdly the modulated tube current applied was low (120 mA

on the average). If this data is excluded, then the dose difference would become

within 16%.
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Figure 3.2: Validation of ARCHER with the experimental measurement
using the human cadaver, (a) 120kVp and (b) 100kVp, fixed
300mA tube current.
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Table 3.2: Validation of ARCHER with the experiment using the human
cadaver, 120kVp, fixed 300mA tube current. The X-ray tube
starting position (“trigger on position (0043,1040)”) is a ran-
dom value even when the scan protocols are kept exactly the
same.

kVp 120 100

organ difference [%]

starting location [◦] 290 109.6 114.3 294.8 294.1 293

stomach 15.88 21.26 18.83 22.32 16.9 18.47

liver 0.06 -16.56 -15.38 3.06 2.98 2.41

colon 15.19 -15.8 -16.05 14.91 15.08 15.54

left kidney 8.31 4.57 2.99 28.88 22.88 21.84

paravertebral gutter -5.98 4.33 3.52 -8.18 -9.73 -9.29

urinary bladder 14.51 -17.63 -15.47 15.74 13.63 15.58

Table 3.3: Validation of ARCHER with the experiment using the ATOM
physical phantom, 120kVp, tube current modulation.

organ
experiment ARCHER

difference [%]
dose [mGy] RSD dose [mGy] RSD

lung 13.8 15.7 11.90 0.01 -13.7

thyroid 14.2 37.1 16.25 0.11 14.4

esophagus 10.1 NA 14.06 0.21 39.2

heart 12.8 7.4 12.10 0.10 -5.5

stomach 11.6 10.2 9.74 0.12 -16.0

liver 13.0 10.3 12.37 0.05 -4.9

spleen 12.2 10.3 10.54 0.17 -13.6

kidneys 11.9 4.7 11.57 0.16 -2.8

thymus 18.8 NA 15.80 0.21 -15.9
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The relative standard deviations of both experiments and simulations are a

measure of the precision, not accuracy of the dose presented. The observed difference

is attributed to the inherent systematic errors that affect the accuracy. ARCHER

contains more sources of systematic errors, not in the photon transport models that

have been verified with MCNPX, but in the geometry modelling. The most signif-

icant error may come from the CT scanner model. Using the CTDI100 phantom,

20 mm beam collimation and 100 and 120kVp, a difference of 0.27% ∼ 5.22% be-

tween the experiments and simulations was reported in the previous study (Ding

2012). Recently, we have simulated the half value layers and compared against the

experiments in the isocenter. The differences are shown in table 3.4. This indicates

that there is still room for improving our CT scanner model. A second contributory

factor lies in the algorithm that converts the DICOM images to a patient-specific

phantom. The analytically derived densities and elemental weights may occasion-

ally have large deviation from the true values, specifically for the weight fraction

of carbon and oxygen atoms (Schneider et al. 2000). The systematic errors in the

experiment is believed to be relatively small and can come from the dosimeter sys-

tem (Liu et al. 2014, Zhang et al. 2014). Eventually, it is worth reiterating that the

observed discrepancy between ARCHER and experiment does not indicate a flawed

physics model developed in this study — which contrarily has been proven very

accurate, but simply suggests that the approach established by previous study to

simulate the experiment is not ideal and can be improved.

Table 3.4: Comparison of half value layers (HVL) in the isocenter by ex-
perimental measurements and Monte Carlo simulations using
GE LightSpeed 16 Pro CT scanner.

kVp experiment [mm] ARCHER [mm] difference

80 5.30 4.95 -6.58%

100 6.48 6.13 -5.39%

120 7.52 7.14 -5.07%

140 8.43 8.03 -4.76%
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3.2 Performance Analysis

The performance of the developed code is evaluated from two perspectives.

One is the conventional factor — computing efficiency, i.e. how much time the code

needs to take to complete a given simulation task. The other is the new factor

introduced by the modern parallel computing industry — energy efficiency, i.e. how

much energy it needs for a given task. These two factors are orthogonal, in that

a code that appears very fast on a many-core parallel processor may undesirably

demand a large amount of energy and therefore a high electricity cost, whereas a

code that appears very energy-saving on a certain platform may take unsought,

extremely long time.

3.2.1 Computing Efficiency

3.2.1.1 Performance Comparison of Different Codes

The execution time of different parallel Monte Carlo codes is listed in table 3.5.

All the ARCHER variants are found to be computationally efficient and are substan-

tially faster than the parallel MCNPX running with 12 MPI processes. There are

three major reasons: first, MCNPX used in this research is a pre-compiled executable

with O1 optimization level and double-precision floating point, while ARCHER uses

more aggressive optimizations and single-precision format. Second, there are three

major differences in the algorithm. (1) ARCHER adopts an improved method for

biased source sampling, in which the initial photon position is bounded by the slot

created by the “cookie cutter” object mentioned in section 2.5.1, leading to a higher

acceptance rate in the rejection sampling process. (2) The Woodcock delta track-

ing method used in ARCHER for path-length sampling is an efficient alternative to

the conventional surface-to-surface ray-tracing adopted by MCNPX. (3) To increase

the speed, ARCHER uses the lookup table interpolation instead of the on-the-fly

rejection sampling used in MCNPX. Third, MCNPX is a general-purpose produc-

tion Monte Carlo code that supports many applications outside of medical physics.

In contrast, ARCHER is developed specifically for CT simulations, and has been

optimized for that specific class of computational models.
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Table 3.5: Computation time of different Monte Carlo codes running on
different hardware architectures for a whole-body CT scan
simulation. A total of 9 × 108 photons are simulated (90
batches, 1 × 107 photons per batch). The numbers in brack-
ets are the speedup factors (ηP) compared to ARCHERCPU.
P=MPI processes, T=threads, S=GPU streams.

code hardware condition
execution
time [min]
(ηP )

FOM im-
provement

parallel MCNPX
X5650
CPU

12 P 476.35 baseline

ARCHERCPU
X5650
CPU

1 P, 12 T/P
11.22 (base-
line)

21.03×

ARCHERGPU
M2090
GPU

15 S 2.08 (5.40 ×) 113.46×

ARCHERGPU
M2090
GPU×6

15 S 0.37 (30.23 ×) 635.65×

ARCHERGPU K20 GPU 15 S 1.75 (6.40 ×) 134.65×

ARCHERGPU
K40 GPU
with boost

15 S 1.03 (10.89 ×) 228.90×

ARCHERCPU+GPU

X5650
CPU and
K40 GPU
with boost

CPU: 1 P, 12
T/P, GPU: 15
S

0.95 (11.85 ×) 249.11×

ARCHERCPU+GPU X5650
CPU and
M2090
GPU ×6

CPU: 1 P, 12
T/P, first 5
GPUs 5 S,
last GPU 4 S

0.38 (29.59 ×) 622.19×

ARCHERCOP
5110p co-
processor

60 P, 4 T/P 3.33 (3.37 ×) 70.87×

ARCHERCPU+COP

X5650
CPU and
5110p co-
processor

CPU: 12 P,
1 T/P, copro-
cessor: 60 P, 4
T/P

2.59 (4.34 ×) 91.25×

To evaluate the performance of different hardware architectures, the parallel

ARCHERCPU code is used as the basis to derive the speedup factors ηP . Both
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ARCHERGPU and ARCHERCOP exhibit a good capability in accelerating MC cal-

culations compared to the CPU counterpart running with 12 threads. In addition,

ARCHERGPU was found to be faster than ARCHERCOP by a factor of 60% ∼ 223%.

It is also interesting to observe that in the case of 1 CPU and 6 M2090 GPUs, there

is more number of batch iterations due to smaller number of streams used, and

that the benefit of using CPU is suppressed by the increased period of low GPU

occupancy, causing a slight performance reduction.

Another important performance factor worthy of comparison is the Figure Of

Merit (FOM) (X-5 Monte Carlo Team 2003a), defined as the inverse of R2T , where

R is the relative standard deviation and T is the execution time. It is known that

MCNPX adopts the more statistically efficient path-length estimator to calculate

the radiation dose (X-5 Monte Carlo Team 2003a), which results in smaller R than

the collision estimator used by ARCHER. However, it is found that the high com-

puting efficiency of ARCHER significantly reduces T , offsets its slightly larger R

and therefore enhances the overall FOM. We normalize the average FOMs across

all the tallied doses by different codes to MCNPX’s average FOM. The results are

listed in table 3.5.
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Figure 3.3: Performance of ARCHERGPU in a strong scaling problem
using 1∼6 Nvidia M2090 GPUs. The computing task was
the simulation of a whole-body axial scan over the RPI-Ault
Male phantom (90 batches). The different total number of
photons across all the batches are listed on the figure.
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The scalability of ARCHERGPU is studied through a strong scaling problem,

in which given a fixed-size Monte Carlo simulation, the computing efficiency is mea-

sured as the amount of hardware resource changed. The result in figure 3.3 shows

that the speedup factors of ARCHERGPU over ARCHERCPU increases almost pro-

portionally as the number of GPUs increased from 1 to 6, indicating a good scal-

ability. The result also underscores the fact that the GPU stream implementation

is capable of improving the performance when the number of photons in a single

batch is not sufficiently large to consume the hardware resource of a single GPU.

Specifically, for the M2090 GPU, the achieved occupancy (the actual number of

active warps per SM divided by its maximum value) p is approximately 1/3. The

Fermi-generation GPU allows a maximum of w = 48 active warps per SM and has

a total of s = 16 SMs. Each warp contains t = 32 threads, and each thread sim-

ulates n = 100 photons. It follows that at least N = pwstn = 819, 200 photons

are required to fully occupy the GPU at runtime. When the computing task was

reduced from 9 × 108 to 4.5 × 107 photons for 90 batches, the number of photons

per batch is reduced from 1 × 107 (> N) to 5 × 105 (< N), leading to a hardware

underutilization. This is effectively avoided by concurrently simulating 15 batches

through GPU streams (Liu et al. 2014a).

3.2.1.2 Performance Comparison with Contemporary Study

The performance comparison between ARCHERGPU and Chen et al. (2012)’s

GPU code is shown in table 3.6. The geometry of our abdomen phantom is altered

to match with Chen et al. (2012)’s parameters. While ARCHERGPU underperforms

by 16% in the low resolution case, it is much faster in the other two cases, and the

performance improvement is more remarkable as the phantom resolution becomes

higher (Liu et al. 2014a).

3.2.2 Energy Efficiency

The power draw by different computing devices as a function of time is plotted

in figure 3.4. There are two qualifications regarding these curves. First, they apply

to the parallel Monte Carlo photon transport process, and do not account for any

other sequential code. Second, for ARCHERGPU and ARCHERCOP, the curves
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Table 3.6: Performance comparison with Chen et al. (2012). The same
geometric parameters and number of photons are chosen to
be consistent with their study.

voxel
resolu-
tion

voxel
dimen-
sion
[mm3]

voxel
num-
ber

total num-
ber of pho-
tons simu-
lated

computation
time by
Chen et al.
(2012) [sec]

computation
time by
ARCHERGPU

[sec]

speedup

high
0.068×
0.068×
0.3

512×
512×
12

1.8×109 328.2 102.22 3.21×

medium
0.136×
0.136×
0.3

256×
256×
12

1.0×109 76.2 56.79 1.34×

low
0.272×
0.272×
0.3

128×
128×
12

0.5×109 24 28.63 0.84×

only consider the power consumed by the hardware accelerators and do not include

that by the idle CPU. Clearly, the K20 GPU (Kepler) requires the least amount

of instantaneous power supply, whereas the 5110p coprocessor demands the most

compared to other computing devices.

The energy consumption, i.e. the power integrated over time, is listed in ta-

ble 3.7. There are two sets of data, one ignoring the energy contribution from the idle

CPU (labelled as device), the other including it (labelled as total). The contribution

from the idle CPU is not significant and the rankings of the energy consumption by a

certain computing device in these two sets of data are the same. Obviously, although

the hardware accelerators in general requires higher power supply, they demonstrate

excellent overall energy-saving capability. Particularly outstanding is the GPU plat-

form. As the hardware evolves from M2090 GF110 chip, to K20 GK110 chip and

to K40 GK110b chip, the energy budget for the given computing task is able to be

significantly reduced. Further, when the GPU boost function is enabled on the K40

GPU, the benefit of higher GPU core frequency and faster code outweighs the cost

of increased power usage. The coprocessor appears less energy efficient, surprisingly
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Figure 3.4: Comparison of the power draw by ARCHER variants run on
the CPU, GPU and coprocessor platform respectively.

than the Fermi GPU that was released one and half year earlier. An alternative

ground on which to compare the energy efficiency is the metric FLOPS per Watt,

as is described in section 2.8.2. The result is shown in figure 3.5. This metric —

important in the High Performance Computing (HPC) field — is interchangeable

with the device energy consumption, because it is legitimate to assume that the

FLOPS are identical across all the ARCHER variants (Liu et al. 2014a).
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Table 3.7: Power and energy use by different codes on different hardware
platforms. The computing task is the simulation of a single
axial scan over the RPI-Adult Male 73kg phantom in the ab-
domen region (1 single batch with 1× 108 photons). For the
GPU and coprocessor cases, the power draw by the idle host
is non-zero, and is included in the total energy consumption
estimate.

device total

average
power

energy
con-
sump-
tion

average
power

energy consump-
tioncode hardware

draw
[Watt]

[Joule]
draw
[Watt]

[Joule]

ARCHERCPU X5650 CPU 129 9675 129 9675 (baseline)

ARCHERGPU M2090 GPU 137.04 2037.81 177.04 2632.61 (3.68×)

ARCHERGPU K20 GPU 98.69 1274.72 138.69 1791.37 (5.40×)

ARCHERGPU
K40 GPU
without boost

103.84 914.88 143.84 1267.29 (7.63×)

ARCHERGPU
K40 GPU
with boost

121.93 909.28 161.93 1207.59 (8.01×)

ARCHERCOP
5110p copro-
cessor

149.78 3406.03 189.78 4315.65 (2.24×)
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Figure 3.5: MFLOPS per Watt ηE (larger is better). As the time unit
cancels out, this metric reflects for a given energy budget,
the amount of work the hardware platform is able to do with
the platform-specific code. For the hardware accelerators, ηE
only accounts for the device energy usage. ηE is an equivalent
quantity to the “device energy consumption” in table 3.7.

3.2.3 Cost Effectiveness

The parameters necessary for cost effectiveness analysis are listed in table 3.8.

The price estimates were obtained on 06/22/2014 from various sources: the electric-

ity rate is from US Energy Information Administration. (2014); the CPU price is

from the online retailer Newegg. (2014a); the M2090 GPU price is from the online re-

tailer Amazon. (2014b); the K20 GPU price is from Amazon. (2014a); the K40 GPU

price is from Newegg. (2014b); the 5110p coprocessor price is from the server retailer

Acmemicro. (2014). The calculated normalized cost effectiveness factors of different

computing unit relative to the Intel Xeon 5650 CPU are plotted in figure 3.6. The

initial values of ηdC(t) can be used as a rough measure of the “worthiness” of a given

computing unit. Suppose that, compared to a CPU, the hardware accelerator were

twice faster, but four times more expensive, then ηdC(0) = 0.5 < 1, which means
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without considering its long-term energy-saving capability, it would not be worth-

while to purchase the hardware accelerator as its performance was overshadowed by

its price. Fortunately, this is not the case. On figure 3.6 all the initial values exceed

1, demonstrating a clear edge of the hardware accelerators over the CPU, and this

advantage tends to increase over the time.

Table 3.8: Parameters requisite for cost effectiveness evaluation. The
K40 GPU works in the boost mode.

parameter meaning value

κ electricity rate per kWh $ 0.2087

CCA,c
u (0) capital cost of one Xeon 5650 CPU $ 799.99

capital cost of one M2090 GPU $ 1570

capital cost of one K20 GPU $ 2695

capital cost of one K40 GPU $ 5299.99
CCA,d
u (0)

capital cost of one 5110p coprocessor $ 2162

Pc average power draw by one Xeon 5650 CPU 129 W

average power draw by one M2090 GPU 177.04 W

average power draw by one K20 GPU 138.69 W

average power draw by one K40 GPU 161.93 W
Pd

average power draw by one 5110p coprocessor 189.78 W

speedup factor of M2090 GPU 5.40×

speedup factor of K20 GPU 6.40×

speedup factor of K40 GPU 10.89×
ηP

speedup factor of 5110p coprocessor 3.37×
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Figure 3.6: Normalized cost effectiveness factor ηdC(t) (larger is better).

The initial values (ηdC(0)) are labelled on the figure.

3.2.4 Profiling

The detailed profiling results of ARCHERGPU are shown in table 3.9, figure 3.7

and table 3.10. There are several interesting findings. First, although the code

contains many conditional branches, the majority of them are not divergent. In

other words, threads in a warp uniformly enter the same branch for most of the

time. However, those divergent threads in a warp tend to execute a large amount

of instructions to the extent that their peers are made inactive by the GPU mask

for most of the time, resulting in a very low warp execution efficiency. This means

that the “branch divergence” problem inherent in the GPU-based Monte Carlo code

indeed reduces the hardware utilization. Second, the execution dependency appears

to be the dominant reason for instruction stalls in figure 3.7. This mainly results

from the very frequent access to the global and local memories, which are known to

have long latency Nvidia. (2014). Third, for the global memory read in particular,

the access pattern is scattered, irregular due to the random nature of Monte Carlo

methods, and the GPU-favored coalesced memory access can hardly be achieved.
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Consequently, a single memory load request from a warp typically leads to multiple

actual transactions.

Table 3.9: Instruction statistics. The K40 GPU with compute capability
of 3.5 does not provide a counter for branch efficiency evalu-
ation. This specific quantity is measured on the M2090 GPU
(Nvidia. 2013g).

metrics meaning value

issue slot utilization
Percentage of issue slots that issued at
least one instruction, averaged across all
cycles

47.93%

issued IPC Instructions issued per cycle 2.35

executed IPC Instructions executed per cycle 2.05

achieved occupancy
Ratio of the average active warps per ac-
tive cycle to the maximum number of
warps supported on a multiprocessor

42.18%

multiprocessor activity
The percentage of time at least one warp
is active on a multiprocessor averaged over
all multiprocessors on the GPU

95.93%

warp execution effi-
ciency

Ratio of the average active threads per
warp to the maximum number of threads
per warp supported on a multiprocessor
expressed as percentage

17.82%

warp non-predicated ex-
ecution efficiency

Ratio of the average active threads per
warp executing non-predicated instruc-
tions to the maximum number of threads
per warp supported on a multiprocessor
expressed as percentage

16.67%

branch efficiency
Ratio of non-divergent branches to total
branches expressed as percentage

92.20%
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10.36% 

Execution 
Dependency 

64.88% 

Data Request 
12.19% 

Texture 
1.06% 

Synchronization 
0.08% 

Other 
11.43% 

Figure 3.7: Statistics of instruction stall. The reasons for instruction stall
can be put into 6 categories. (a)Instructions fetch — Percent-
age of stalls occurring because the next assembly instruction
has not yet been fetched. (b) Execution dependency — per-
centage of stalls occurring because an input required by the
instruction is not yet available. (c) Data request — percent-
age of stalls occurring because a memory operation cannot
be performed due to the required resources not being avail-
able or fully utilized, or because too many requests of a given
type are outstanding. (d) Texture — percentage of stalls oc-
curring because the texture sub-system is fully utilized or
has too many outstanding requests. (e) Synchronization —
Percentage of stalls occurring because the warp is blocked
at a syncthreads() call. (f) Other — percentage of stalls
occurring due to miscellaneous reasons (Nvidia. 2013g).
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Table 3.10: Memory statistics (Nvidia. 2013g).

metrics meaning value

L1 global hit rate Hit rate in L1 cache for global loads 86.44%

L1 local hit rate
Hit rate in L1 cache for local loads
and stores

21.39%

L2 hit rate (L1 reads)
Hit rate at L2 cache for all read re-
quests from L1 cache

50.27%

L2 hit rate (texture reads)
Hit rate at L2 cache for all read re-
quests from texture cache

19.14%

texture cache hit rate Texture cache hit rate 1.85%

global memory load effi-
ciency

Ratio of requested global memory
load throughput to required global
memory load throughput expressed
as percentage

6.30%

global memory store effi-
ciency

Ratio of requested global mem-
ory store throughput to required
global memory store throughput
expressed as percentage

30.03%

3.3 Clinical Applications

In the clinical application test, ARCHERGPU is used to calculate 3-D dose

distribution, i.e. the absorbed doses recorded in a voxel-by-voxel manner. Three

cross-sections of the dose matrix are used to generate the dose map in figure 3.8.

The statistical requirement is such that the doses to all the well-segmented organs

have a relative standard deviation less than 1% (Liu et al. 2014a).
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Figure 3.8: Calculated CT dose distributions with the prostate, rectum,
urinary bladder and femoral head outlined in green.

The computing efficiency of ARCHERGPU on different GPU models is listed

in table 3.11. This denotes that ARCHERGPU performs very fast in our specific test
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case, and that the code scales very well when the number of hardware devices is

increased from 1 to 6.

Table 3.11: Computing efficiency of ARCHERGPU in the clinical 3-D dose
distribution calculations.

hardware accelerator execution time [sec]

1 M2090 GPU 6.74

6 M2090 GPUs 1.23

1 K20 GPU 5.60

1 K40 GPU with boost 3.42

3.4 Long-term Development of ARCHER for CT

According to Moore’s law (Moore 1998) — which arguably still maintains its

validity — the exascale computing era will arrive in around 2020. Along with it

will be the drastic change in the hardware architectures and programming models.

The hardware accelerators come into being and rapidly develop in this context.

Distinguished in delivering high FLOPS and having high energy efficiency, they

require developers to either use new platform-specific programming models or fine-

tune the code with new platform-specific tools. On the other hand, the heated

competition between hardware manufacturers in the High Performance Computing

(HPC) industry makes multiple important questions unanswered — which platform

may dominate in the future, which programming model is the best to select and

stick to, whether it is worth the labor and time to port the existing code to the new

architecture, or it is wiser to wait for the conventional hardware to evolve.

The new computing technologies will impact our nuclear engineering and med-

ical physics communities, and expand our view from the computing performance

alone to scalability, energy efficiency, environmental friendliness and a lot more.

With that in mind, we have initiated this long-term research program ARCHER to

develop a new generation of parallel, scalable Monte Carlo package targeted for dif-

ferent computing platforms (figure 3.9). ARCHER is envisioned as a versatile test
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bed to explore how the new parallel computing platforms can potentially benefit

different applications in our field, to which extent and at what cost (Xu et al. 2013,

Liu et al. 2014a). This study specifically focuses on the photon transport for the

CT imaging dosimetry application. Other studies we have been conducting include

the electron transport for the radiotherapy application (Su et al. 2014) and neutron

transport for the reactor analysis application (Ding et al. 2011, Liu et al. 2012).

Application 
• CT imaging  
• Radiotherapy  
• Shielding design 
• Reactor analysis 

Hardware 
• Intel/AMD multi-core CPU 
• NVIDIA Fermi/Kepler GPU 
• AMD GCN GPU 
• Intel MIC coprocessor 

Software 
• MPI 
• OpenMP 
• Pthreads 
• CUDA 
• OpenACC 
• OpenCL 
• Cilk 

ARCHER 

Figure 3.9: ARCHER is envisioned as a versatile test bed for the modern
and future parallel computing platforms. It will be designed
as a package of application-oriented codes, having several ver-
sions written in different programming languages, and opti-
mized to different platforms.



CHAPTER 4

CONCLUSIONS

“If one has really technically penetrated a subject, things that previously

seemed in complete contrast, might be purely mathematical transforma-

tions of each other.”

—von Neumann, John

4.1 Summary

This research applied the emerging HPC technologies — the GPU and copro-

cessor — to the field of Monte Carlo radiation dosimetry. A new parallel Monte

Carlo package named ARCHER was developed to enable fast and accurate patient-

specific X-ray computed tomography (CT) dose calculations. ARCHER had three

components, the parallel CPU code, the GPU code and the coprocessor code, that

helped us evaluate the performance of various computing platforms.

Corresponding to our objectives, this research has the following conclusions.

• ARCHER is a Monte Carlo simulation tool with practical value and good flexi-

bility. From users’ perspective, ARCHER has three features. First, it provides

convenience for dose estimates by incorporating a built-in model of the GE

LightSpeed 16 Pro CT scanner and a library of preset heterogeneous phan-

toms. Second, it can convert the clinical CT data, i.e. the Digital Imaging and

Communications in Medicine (DICOM) images into heterogeneous phantoms.

Third, it is parallel, highly optimized, and can run on three types of hardware

platforms, the multi-core CPU, the Nvidia GPU and the Intel coprocessor.

Portions of this chapter are to appear in: Liu, T., Du, X., Su, L., Ji, W., Carothers, C.
D., Shephard, M. S., Liu, B., Kalra, M., Brown, F. B., Fitzgerald, P. F. and Xu, X. G. (2014),
‘ARCHER-CT, an extremely fast Monte Carlo code for patient-specifc ct dose calculations using
NVIDA GPU and Intel coprocessor technologies: part I — software development and testing’,
Phys. Med. Biol.. (submitted).
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These three features make ARCHER a valuable Monte Carlo simulator in the

radiation dosimetry research as well as in the clinical application. They also

allow ARCHER to become a testbed to assess the practical value of different

parallel platforms of today and tomorrow.

• ARCHER has accurate transport physics model. The benchmark test against

the production code Monte Carlo N-Particle eXtended (MCNPX) showed

that the photon transport model in ARCHER was very accurate, and that

ARCHER could provide reliable dose estimates provided the input simulation

models were accurate. The comparison with the experiment using the real

human subject exhibited a dose discrepancy by a factor of 29%, indicating

that there was room for improvement on the current CT scanner model and

the phantom generation algorithm.

• For CT dose calculations, both the GPU and coprocessor codes of ARCHER

have higher computing, energy efficiency and cost effectiveness, and the GPU

platform takes the large lead. The performance tests demonstrated several

facts. First, ARCHERGPU run on an M2090 (Fermi), K20 (Kepler) or K40 (Ke-

pler) GPU had higher computing efficiency than ARCHERCPU on a 6-core Intel

Xeon X5650 CPU (Westmere) by a factor of 5.40 ∼ 10.89, while ARCHERCOP

on an Intel Xeon Phi 5110p coprocessor (Knights Corner) was faster than the

CPU code by a factor of 3.37. Second, compared to ARCHERCPU, ARCHERGPU

was more energy-efficient by a factor of 3.68 ∼ 8.01, while ARCHERCOP was

by a factor of 2.24. Third, using the cost-effectiveness model we established,

the GPU platform was found to be 1.64 ∼ 2.75 times more economical than

the CPU, and the coprocessor platform was 1.25 times better than the CPU.

Fourth, the GPU stream implementation allowed ARCHERGPU to maintain

good scalability. Fifth, exploitation of system concurrency at different scales —

including multiple GPU grids on a single GPU, multiple GPUs, and CPU-GPU

or CPU-coprocessor — effectively improved the performance. Particularly, it

was concluded that the GPU platform, from the past Fermi architecture to the

current Kepler, outperformed the coprocessor platform of the current Knights
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Corner architecture in terms of the computing efficiency and the energy effi-

ciency.

• ARCHER has clinical potentials. In the clinical application, it was found that

ARCHERGPU had good performance, taking 3.42 seconds on a K40 GPU and

1.23 seconds on 6 M2090 GPUs to finish the calculations of CT imaging dose

distribution. The current paradigm of CT organ dose calculation is based on

the “indirect and population-averaged patient phantom” approach and carried

out in the off-line retrospective studies. This result suggests that the new

paradigm of “direct and patient-specific” CT dose calculation is feasible with

the use of an efficient Monte Carlo computing engine as an integral part of the

CT imaging process. Doubtless, such a capability will facilitate new research

in CT image quality optimization and dose management.

4.2 Future Work

Future work will focus on addressing several limitations in this research (Liu

et al. 2014a) and extending the functions of ARCHER. The specific tasks are listed

below.

• In the dose distribution calculations, for simplicity, we directly used the num-

ber of particles that satisfied the statistical requirement for the case of organ

dose calculation. Ideally there should be a dynamic approach to run the dose

distribution calculation in batches using a preset number of particles, check

the statistics between batches at runtime, and terminate the calculation once

certain statistical requirements imposed on the ROI are met.

• The energy analysis adopted the sophisticated software approach and only

applied to the processing units, and not to the system memory, hard drive

and cooling device, whereas a more straightforward and thorough method will

be using the external power meter to obtain the electricity-related information

from the heterogeneous computing system.

• Successful realization of accurate, fast, patient-specific organ dose calculation

in clinics requires a chain of efficient tools. ARCHER constitutes the last step
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of computing and reporting radiation doses provided that the accurate patient

anatomical data are readily available. The tools that precede ARCHER will

be the ones capable of performing fast and reliable image reconstruction, seg-

mentation or outline, and construction of the patient phantoms. These tools

should be carefully surveyed in the future.

• The electron module of ARCHER (Su et al. 2014) currently adopts a simplistic

photon transport treatment. Future work is to replace this part with the

accurate transport modelling developed in this study.

• The visualization module is currently being developed to display the CT scan-

ner, computational phantom and/or the photon trajectories in 3-D rendered

images. Two approaches are being used. One simple approach is to record

the photon spatial information, save it as a Non-uniform rational basis spline

(NURBS) object to a Wavefront .obj file (Wavefront Technologies. 2013), and

later visualize it in commercial 3-D modelling software such as Rhinoceros

(Robert McNeel & Associates. 2014). The other advanced approach is to vi-

sualize all the information by OpenGL (Woo et al. 1999) and give users full

freedom to customize the image rendering.

• A generic front end is being developed to achieve the global level of con-

currency, i.e. the concurrent execution of the CPU, GPU and coprocessor

together. This will maximize the hardware usage and further improve the

computing efficiency of ARCHER on our heterogeneous computing system.

The front end is written in OpenCL (Khronos OpenCL Working Group. 2008)

and will be able to detect the number and type of computing units, split the

simulation task properly, and invoke the existing CPU and hardware acceler-

ator codes.
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APPENDIX A

VERIFICATION OF ARCHER WITH MCNP

A.1 73 kg RPI adult male phantom

Table A.1: Verification of ARCHER with MCNP using 73 kg RPI adult
male phantom.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

colon wall 7.20e-08 6.16e-04 7.21e-08 8.91e-04 0.20%

lungs (left & right) 7.94e-08 3.39e-04 7.97e-08 4.75e-04 0.28%

stomach wall 7.23e-08 8.27e-04 7.25e-08 1.29e-03 0.19%

breast (left & right) 6.93e-08 1.59e-03 6.90e-08 2.84e-03 -0.45%

gonads for male 1.16e-07 1.50e-03 1.16e-07 2.21e-03 0.13%

urinary bladder wall 6.06e-08 1.23e-03 6.07e-08 2.29e-03 0.13%

esophagus 8.41e-08 1.23e-03 8.42e-08 2.19e-03 0.11%

liver 8.35e-08 4.68e-04 8.35e-08 5.09e-04 0.08%

thyroid 1.42e-07 1.59e-03 1.40e-07 2.56e-03 -0.80%

brain 8.96e-08 5.28e-04 8.97e-08 5.67e-04 0.16%

salivary glands (left &
right)

1.03e-07 8.62e-04 1.03e-07 1.40e-03 0.21%

skin 9.17e-08 9.18e-05 9.19e-08 2.33e-04 0.26%

adrenals 7.93e-08 2.20e-03 7.95e-08 4.00e-03 0.26%

extrathoracic region 8.78e-08 2.01e-03 8.81e-08 3.07e-03 0.37%

gall bladder wall 6.21e-08 1.95e-03 6.22e-08 4.65e-03 0.07%

heart wall 7.48e-08 6.81e-04 7.50e-08 9.33e-04 0.24%

kidneys (left & right) 8.00e-08 8.32e-04 8.01e-08 1.04e-03 0.12%

lymphatic nodes 6.72e-08 6.80e-04 6.72e-08 1.36e-03 0.03%

muscle 8.64e-08 1.13e-04 8.65e-08 1.27e-04 0.16%
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Table A.1: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

oral mucosa 8.77e-08 1.66e-03 8.80e-08 2.62e-03 0.39%

pancreas 6.61e-08 1.24e-03 6.62e-08 1.58e-03 0.04%

prostate 7.14e-08 2.55e-03 7.08e-08 3.98e-03 -0.87%

small intestine 7.05e-08 6.33e-04 7.05e-08 7.08e-04 -0.08%

spleen 8.23e-08 1.12e-03 8.25e-08 1.44e-03 0.17%

thymus 7.94e-08 1.76e-03 7.96e-08 2.89e-03 0.28%

spongiosa combined 1.09e-07 1.85e-04 1.09e-07 2.34e-04 -0.17%

medullary cavity com-
bined

6.60e-08 6.15e-04 6.63e-08 1.08e-03 0.36%

cortical bone combined 2.90e-07 1.79e-04 2.89e-07 2.06e-04 -0.48%

all bone combined 1.83e-07 1.59e-04 1.82e-07 1.70e-04 -0.37%

adipose tissue 6.87e-08 1.31e-04 6.88e-08 1.70e-04 0.14%

humeri, upper half, spon-
giosa

4.92e-08 1.17e-03 4.91e-08 1.56e-03 -0.27%

clavicles, spongiosa 5.63e-08 1.14e-03 5.61e-08 2.04e-03 -0.32%

cranium, spongiosa 7.51e-08 4.58e-04 7.49e-08 6.64e-04 -0.37%

femora, upper half, spon-
giosa

5.85e-08 6.20e-04 5.82e-08 8.06e-04 -0.51%

mandible, spongiosa 8.01e-08 9.92e-04 7.96e-08 1.51e-03 -0.59%

pelvis, spongiosa 4.91e-08 5.79e-04 4.88e-08 7.38e-04 -0.55%

ribs, spongiosa 6.40e-08 3.72e-04 6.37e-08 6.23e-04 -0.55%

scapulae, spongiosa 5.07e-08 9.61e-04 5.05e-08 1.29e-03 -0.52%

cervical spine, spongiosa 8.51e-08 9.54e-04 8.50e-08 1.56e-03 -0.14%

thoracic spine, spongiosa 6.00e-08 7.09e-04 5.98e-08 9.59e-04 -0.38%

lumbar spine, spongiosa 4.86e-08 8.78e-04 4.85e-08 1.12e-03 -0.37%

sacrum, spongiosa 5.48e-08 1.03e-03 5.48e-08 1.42e-03 -0.12%

sternum, spongiosa 8.39e-08 1.06e-03 8.37e-08 1.80e-03 -0.15%
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Table A.1: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

all, spongiosa 5.93e-08 2.19e-04 5.91e-08 2.89e-04 -0.43%

A.2 142 kg RPI adult male phantom

Table A.2: Verification of ARCHER with MCNP using 142 kg RPI adult
male phantom.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

colon wall 3.21e-08 9.53e-04 3.20e-08 1.35e-03 -0.30%

lungs (left & right) 5.86e-08 4.03e-04 5.87e-08 5.57e-04 0.09%

stomach wall 3.54e-08 1.22e-03 3.54e-08 1.86e-03 -0.08%

breast (left & right) 5.41e-08 1.77e-03 5.46e-08 3.22e-03 0.95%

gonads for male 9.40e-08 1.68e-03 9.44e-08 2.46e-03 0.44%

urinary bladder wall 2.78e-08 1.85e-03 2.77e-08 3.41e-03 -0.45%

esophagus 7.38e-08 1.32e-03 7.38e-08 2.35e-03 -0.02%

liver 4.49e-08 6.52e-04 4.50e-08 7.02e-04 0.17%

thyroid 1.31e-07 1.68e-03 1.30e-07 2.67e-03 -0.92%

brain 8.86e-08 5.11e-04 8.88e-08 5.71e-04 0.23%

salivary glands (left &
right)

1.00e-07 8.91e-04 1.01e-07 1.43e-03 0.48%

skin 8.05e-08 8.59e-05 8.08e-08 2.09e-04 0.35%

adrenals 5.79e-08 2.74e-03 5.75e-08 4.74e-03 -0.70%

extrathoracic region 8.34e-08 2.05e-03 8.38e-08 3.16e-03 0.48%

gall bladder wall 2.93e-08 2.94e-03 2.96e-08 6.78e-03 1.02%

heart wall 5.20e-08 8.17e-04 5.20e-08 1.12e-03 -0.09%

kidneys (left & right) 4.48e-08 1.19e-03 4.47e-08 1.43e-03 -0.17%

lymphatic nodes 4.90e-08 7.76e-04 4.90e-08 1.59e-03 0.02%
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Table A.2: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

muscle 6.29e-08 1.35e-04 6.30e-08 1.52e-04 0.17%

oral mucosa 8.94e-08 1.67e-03 8.96e-08 2.59e-03 0.21%

pancreas 2.72e-08 2.01e-03 2.70e-08 2.52e-03 -0.49%

prostate 3.61e-08 3.65e-03 3.55e-08 5.63e-03 -1.67%

small intestine 2.66e-08 1.06e-03 2.65e-08 1.16e-03 -0.27%

spleen 5.45e-08 1.44e-03 5.45e-08 1.80e-03 -0.10%

thymus 6.12e-08 2.02e-03 6.12e-08 3.31e-03 0.02%

spongiosa combined 8.52e-08 2.08e-04 8.52e-08 2.64e-04 0.08%

medullary cavity com-
bined

5.07e-08 7.12e-04 5.08e-08 1.23e-03 0.06%

cortical bone combined 2.34e-07 2.01e-04 2.35e-07 2.29e-04 0.15%

all bone combined 1.46e-07 1.79e-04 1.46e-07 1.90e-04 0.12%

adipose tissue 5.42e-08 9.79e-05 5.44e-08 1.07e-04 0.34%

humeri, upper half, spon-
giosa

3.87e-08 1.12e-03 3.86e-08 1.51e-03 -0.40%

clavicles, spongiosa 4.83e-08 1.17e-03 4.82e-08 2.18e-03 -0.13%

cranium, spongiosa 7.42e-08 4.54e-04 7.42e-08 6.69e-04 0.01%

femora, upper half, spon-
giosa

3.21e-08 8.43e-04 3.21e-08 1.07e-03 -0.15%

mandible, spongiosa 7.81e-08 9.84e-04 7.81e-08 1.51e-03 -0.06%

pelvis, spongiosa 2.46e-08 8.15e-04 2.45e-08 1.03e-03 -0.55%

ribs, spongiosa 5.00e-08 4.22e-04 5.00e-08 7.00e-04 -0.03%

scapulae, spongiosa 4.26e-08 1.04e-03 4.25e-08 1.40e-03 -0.17%

cervical spine, spongiosa 7.71e-08 9.95e-04 7.72e-08 1.63e-03 0.09%

thoracic spine, spongiosa 4.75e-08 7.92e-04 4.74e-08 1.07e-03 -0.26%

lumbar spine, spongiosa 2.26e-08 1.28e-03 2.24e-08 1.62e-03 -0.64%

sacrum, spongiosa 2.90e-08 1.42e-03 2.91e-08 1.95e-03 0.17%
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Table A.2: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

sternum, spongiosa 6.20e-08 1.27e-03 6.18e-08 2.10e-03 -0.27%

all, spongiosa 4.24e-08 2.50e-04 4.23e-08 3.33e-04 -0.16%

A.3 122 kg RPI adult female phantom

Table A.3: Verification of ARCHER with MCNP using 122 kg RPI adult
female phantom.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

colon wall 3.60e-08 9.46e-04 3.59e-08 1.34e-03 -0.19%

lungs (left & right) 6.75e-08 4.31e-04 6.75e-08 6.03e-04 0.00%

stomach wall 4.00e-08 1.26e-03 4.00e-08 1.89e-03 -0.16%

breast (left & right) 5.50e-08 7.43e-04 5.52e-08 9.46e-04 0.42%

ovaries for female 2.96e-08 4.20e-03 2.98e-08 7.39e-03 0.72%

urinary bladder wall 3.53e-08 1.80e-03 3.52e-08 3.46e-03 -0.10%

esophagus 8.18e-08 1.37e-03 8.20e-08 2.46e-03 0.16%

liver 5.40e-08 6.80e-04 5.41e-08 7.39e-04 0.18%

thyroid 1.37e-07 1.78e-03 1.36e-07 2.92e-03 -1.02%

brain 9.82e-08 5.32e-04 9.85e-08 5.90e-04 0.23%

salivary glands (left &
right)

1.06e-07 1.03e-03 1.07e-07 1.61e-03 0.31%

skin 8.81e-08 8.99e-05 8.85e-08 2.12e-04 0.37%

adrenals 6.00e-08 2.90e-03 6.03e-08 4.92e-03 0.40%

extrathoracic region 1.20e-07 1.97e-03 1.20e-07 3.06e-03 0.12%

gall bladder wall 3.34e-08 3.15e-03 3.36e-08 7.38e-03 0.49%

heart wall 5.89e-08 8.90e-04 5.87e-08 1.25e-03 -0.26%

kidneys (left & right) 4.65e-08 1.27e-03 4.65e-08 1.53e-03 -0.00%
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Table A.3: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

lymphatic nodes 5.81e-08 9.91e-04 5.79e-08 1.97e-03 -0.27%

muscle 7.12e-08 1.52e-04 7.13e-08 1.76e-04 0.13%

oral mucosa 1.16e-07 2.47e-03 1.15e-07 4.21e-03 -0.55%

pancreas 2.86e-08 2.20e-03 2.86e-08 2.75e-03 -0.24%

uterus 2.43e-08 2.60e-03 2.42e-08 3.47e-03 -0.38%

small intestine 2.93e-08 1.11e-03 2.92e-08 1.22e-03 -0.41%

spleen 6.71e-08 1.41e-03 6.73e-08 1.78e-03 0.31%

thymus 6.78e-08 2.15e-03 6.77e-08 3.63e-03 -0.18%

spongiosa combined 9.79e-08 2.32e-04 9.76e-08 3.06e-04 -0.23%

medullary cavity com-
bined

5.92e-08 6.63e-04 5.91e-08 1.18e-03 -0.16%

cortical bone combined 2.84e-07 2.11e-04 2.86e-07 2.49e-04 0.85%

all bone combined 1.79e-07 1.94e-04 1.79e-07 2.11e-04 -0.43%

adipose tissue 5.94e-08 9.85e-05 5.96e-08 1.05e-04 0.24%

humeri, upper half, spon-
giosa

4.27e-08 1.39e-03 4.24e-08 1.86e-03 -0.83%

clavicles, spongiosa 5.53e-08 1.22e-03 5.47e-08 2.41e-03 -1.03%

cranium, spongiosa 8.35e-08 4.75e-04 8.32e-08 7.04e-04 -0.36%

femora, upper half, spon-
giosa

3.51e-08 1.07e-03 3.47e-08 1.44e-03 -0.96%

mandible, spongiosa 9.49e-08 1.14e-03 9.40e-08 1.95e-03 -0.98%

pelvis, spongiosa 3.02e-08 8.71e-04 2.99e-08 1.15e-03 -0.86%

ribs, spongiosa 5.97e-08 4.63e-04 5.94e-08 8.73e-04 -0.60%

scapulae, spongiosa 4.74e-08 1.24e-03 4.70e-08 1.79e-03 -0.74%

cervical spine, spongiosa 9.03e-08 9.97e-04 9.03e-08 1.64e-03 -0.05%

thoracic spine, spongiosa 5.14e-08 8.41e-04 5.11e-08 1.19e-03 -0.55%

lumbar spine, spongiosa 2.67e-08 1.30e-03 2.65e-08 1.68e-03 -0.94%
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Table A.3: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

sacrum, spongiosa 3.87e-08 1.52e-03 3.87e-08 2.06e-03 0.08%

sternum, spongiosa 6.93e-08 1.34e-03 6.89e-08 2.27e-03 -0.61%

all, spongiosa 5.01e-08 2.74e-04 4.98e-08 3.81e-04 -0.58%

A.4 RPI 9-month pregnant female phantom

Table A.4: Verification of ARCHER with MCNP using RPI 9-month
pregnant female phantom.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

brain 7.50e-08 6.01e-04 7.51e-08 6.69e-04 0.19%

eyeballs 1.01e-07 1.91e-03 1.01e-07 3.43e-03 -0.24%

eye lens 1.13e-07 5.53e-03 1.11e-07 1.74e-02 -1.92%

thyroid 1.35e-07 1.67e-03 1.34e-07 2.90e-03 -0.46%

trachea 8.43e-08 1.97e-03 8.35e-08 4.72e-03 -0.88%

thymus 8.48e-08 1.91e-03 8.54e-08 3.26e-03 0.71%

lungs 7.73e-08 3.81e-04 7.74e-08 5.56e-04 0.14%

heart wall 7.77e-08 8.06e-04 7.78e-08 1.11e-03 0.12%

esophagus wall 7.29e-08 1.40e-03 7.30e-08 2.60e-03 0.18%

breasts 8.84e-08 4.87e-04 8.85e-08 6.02e-04 0.19%

stomach wall 6.33e-08 9.95e-04 6.35e-08 1.51e-03 0.27%

liver 7.25e-08 5.99e-04 7.25e-08 6.52e-04 -0.06%

gallbladder wall 5.88e-08 2.17e-03 5.78e-08 5.58e-03 -1.68%

pancreas 5.33e-08 1.54e-03 5.30e-08 2.00e-03 -0.49%

spleen 7.75e-08 1.30e-03 7.77e-08 1.66e-03 0.19%

kidneys 6.99e-08 9.29e-04 6.99e-08 1.20e-03 0.10%

adrenals 6.39e-08 2.33e-03 6.41e-08 4.42e-03 0.36%
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Table A.4: Continued.

organ
MCNP ARCHER difference

dose RSD dose RSD [%]

small intestine wall and
contents

5.21e-08 6.07e-04 5.20e-08 7.72e-04 -0.11%

large intestine wall 5.58e-08 6.46e-04 5.58e-08 9.98e-04 -0.04%

large intestine contents 5.74e-08 7.57e-04 5.72e-08 1.10e-03 -0.25%

ovaries 3.97e-08 3.55e-03 3.98e-08 6.38e-03 0.05%

bladder wall 6.13e-08 1.33e-03 6.11e-08 2.63e-03 -0.40%

uterine wall 6.81e-08 3.51e-04 6.82e-08 5.29e-04 0.13%

uterine contents 5.75e-08 3.85e-04 5.74e-08 4.19e-04 -0.05%

placenta 7.67e-08 6.23e-04 7.68e-08 7.67e-04 0.17%

fetal soft tissue 5.91e-08 4.53e-04 5.91e-08 4.99e-04 -0.08%

fetal skeleton 1.71e-07 6.82e-04 1.70e-07 8.40e-04 -0.75%

fetal brain 3.98e-08 1.30e-03 3.96e-08 1.53e-03 -0.56%

skeleton 2.55e-07 1.64e-04 2.54e-07 1.72e-04 -0.58%

skin 8.80e-08 9.50e-05 8.82e-08 2.68e-04 0.23%

remainder 7.70e-08 9.89e-05 7.71e-08 1.09e-04 0.15%

fetus total 5.68e-08 4.44e-04 5.67e-08 4.85e-04 -0.12%
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