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Abstract — XSBench is a proxy application used to study the performance of nuclear macroscopic
cross-section data construction, which is usually the most time-consuming process in Monte Carlo neutron
transport simulations. In this technical note we report on our experience in optimizing XSBench to Intel
multicore central processing units (CPUs), many integrated core coprocessors (MICs), and Nvidia graphics
processing units (GPUs). The continuous-energy cross-section construction in the Monte Carlo simulation
of the Hoogenboom-Martin large problem is used in our benchmark. We demonstrate that through several
tuning techniques, particularly data prefetch, the performance of XSBench on each platform can be desirably
improved compared to the original implementation on the same platform. It is shown that the performance
gain is 1.46� on the Westmere CPU, 1.51� on the Haswell CPU, 2.25� on the Knights Corner (KNC) MIC,
and 5.98� on the Kepler GPU. The comparison across different platforms shows that when using the high-end
Haswell CPU as the baseline, the KNC MIC is 1.63� faster while the high-end Kepler GPU is 2.20� faster.

Keywords — XSBench, MIC (Xeon Phi), GPU.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Recent years have seen an increased application of
accelerators in high-performance computing (HPC). Two
mainstream accelerators are many integrated core copro-
cessors (MICs) (also known as Xeon Phi) by Intel and
graphics processing units (GPUs) by Nvidia. Because of
their high-energy efficiency (compute performance per
watt), MICs and GPUs are being utilized in the next-
generation supercomputers at several national laboratories
in the United States. For example, Trinity at Los Alamos
National Laboratory, Cori at National Energy Research
Scientific Computing Center, and Aurora at Argonne
National Laboratory (ANL) will be based on Intel’s
Knights Landing and Knights Hill MICs, while Summit at
Oak Ridge National Laboratory and Sierra at Lawrence
Livermore National Laboratory will use Nvidia’s future-
generation Volta GPUs.

In nuclear engineering there has been a strong interest
in applying accelerators to reduce the time required to
perform Monte Carlo radiation transport simulations for
reactor criticality problems. Several studies have evalu-
ated the performance of GPUs on neutron transport.1–3

The transport methods implemented in these studies range
from simple history-based and vectorized one-energy
models to vectorized continuous-energy models. Recently,
OpenMC has been accelerated on MICs for a full-core pressur-
ized water reactor transport simulation.4

Accelerator-based heterogeneous architecture is con-
sidered one of the candidates for exascale systems that are
expected to arrive in the beginning of the next decade. To
maximize the efficient use of these proposed computing
systems, the U.S. Department of Energy (DOE) has
launched a co-design initiative to engage the software and
hardware developers in a collaborative effort. To facilitate
that effort, DOE has defined a group of proxy applications
as the groundwork for two-way communication between
software and hardware developers.5 The proxy applications
aim to encapsulate the performance characteristics of sev-*E-mail: liut10@rpi.edu
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eral scientific computing applications while providing a
simpler code base that is easier to analyze.5

One such proxy application called XSBench was
developed by Tramm et al.7 at ANL. XSBench represents
the most time-consuming computation task within Monte
Carlo neutron transport, i.e., the construction of the mac-
roscopic cross section, which accounts for 33% or more of
the total computing time in MCNP (Ref. 8) and 85% in
OpenMC (Refs. 6 and 9). The original XSBench is a
parallel OpenMP code written in C for the traditional
multicore central processing units (CPUs). It facilitates
the performance study of CPU-only systems by collecting
bandwidth, floating-point operations per second (FLOPS),
and scalability metrics.6

There has been only one study on optimizing XSBench to
the accelerator platforms, conducted by Scudiero at
Nvidia.10 Several important tuning techniques including
loading outside inner loop, using LDG intrinsics, unroll-
ing outer loop, and fuel sort were introduced to enhance
the performance of the GPU-based XSBench code. These
methods are described in Sec. II.D. It was reported that the
code on a K40 GPU was approximately 5.6 times faster
than that on a ten-core Ivy Bridge CPU.

This technical note is the first to optimize XSBench to
the MIC and CPU platforms and thereby to make a fair
comparison among CPU, GPU, and MIC—all computing
devices are evolving rapidly in HPC nowadays. The
optimization effort is mainly focused on the methods of
hiding memory latency. For completeness, this technical
note also describes how the code was ported to the GPU
according to Ref. 10. In addition, we summarize our
preliminary test of the hash-based energy lookup
algorithm9 on the MIC device.

II. MATERIALS AND METHODS

This section describes the basic data structure and
algorithm used in XSBench as well as the optimization
techniques for the CPU, MIC, and GPU platforms.

II.A. The Original XSBench Algorithm

There are three data categories in XSBench,6 shown
in Fig. 1: nuclide grid, unionized grid, and material data.

First, the nuclide grid is an array of structures (AOS). It
has NE · Nn elements, where NE is the average number of
energy grid points per nuclide and Nn is the number of
nuclides. Each element structure is composed of five contig-
uous double-precision data values: the total cross section �t,
the scattering cross section �s, the absorption cross section
�a, the fission cross section �f, and the average number of
fission neutrons �. For a certain nuclide, the belonging ele-

ments are sorted in ascending order of the energy grid points.
There is an additional array of pointers with Nn elements.
They store the address of the first element (i.e., nuclide grid
point with lowest energy) for each nuclide. This array is used
to conveniently access nuclide grid elements given the
nuclide index and energy index.

Second, the unionized grid is also an AOS with a length
of NE · Nn. It is a result of combining and reordering all the
energy grid points from all the nuclides in the nuclide grid.
Each element structure has two components: a double-
precision energy grid point and a pointer. For each energy
grid point, the paired pointer points to an index array, which
provides the indices of that energy on the nuclide grid for all
the nuclides.11 This data layout enables a fast cross-section
construction algorithm called double indexing.12 All the
index arrays are placed contiguously in the linear memory. In
total, the index array has NE · Nn · Nn elements.

Third, the material data consist of several arrays, includ-
ing the number of nuclides each material contains, the iden-
tifier (ID) of each nuclide in that material, the corresponding
concentration, and the array of pointers designed to facilitate
the access to the nuclide ID and concentration arrays.

At runtime, as a preprocessing step, XSBench gener-
ates the nuclide grid using pseudorandom numbers. The
code then performs the computational kernel: macro-
scopic cross-section construction (also called lookup).
The steps of performing a single instance of construction
are listed in Algorithm 1 in the Appendix. The code is
parallel where multiple OpenMP threads execute their
own instances of Algorithm 1 concurrently. To make it
clear, different threads are not used in a single evaluation
of Algorithm 1. The energy and material data are ran-
domly chosen, followed by a single binary search
procedure in the unionized energy grid to find the index iE

Fig. 1. Diagram of XSBench data structure.
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of the given energy E (step 1). Then, the program iterates
over all the nuclides contained in the given material. Each
iteration is composed of three steps. First (steps 3, 4, and
5), the nuclide ID in and concentration are loaded from the
system main memory; the locations of the lower energy
N�0� and higher energy N�6� are determined based on in

and iE using the double-indexing method.12 Second (steps
6 through 13), the cross-section data are loaded from the
system main memory, and the microscopic cross section
at energy E is calculated by interpolation. Third (steps 14
through 18), the per-nuclide cross section is weighted by
the concentration, and the result is accumulated.

By design, XSBench supports several cross-section
construction problems. The major difference among these
problems is the number of nuclides in the fuel and the
average number of energy grid points per nuclide and thus
the memory space required to hold these data. In this
technical note we focus on the cross-section construction
for the Hoogenboom-Martin (H-M) large problem that
entails 321 nuclides in the fuel, 11 303 energy grid points
per nuclide, and �5.7-Gbyte memory usage.13

As an aside, XSBench focuses on the performance
study of the cross-section construction process and
ignores particle tracking, reaction simulation, and tally. It
thus generates cross-section data using random numbers
for practical convenience instead of using actual nuclear
data libraries. Some other data are also artificially gener-
ated, including the energy and material concentration
data. The rest come from the actual H-M large problem.

II.B. Tuning XSBench to the MIC Platform

The coprocessor used in this study is Intel’s first-
generation MIC, also known as Knights Corner (KNC). It
is built upon the legacy Pentium cores. Each core has a
32-kbyte L1 data cache and a 512-kbyte L2 cache. The L2
cache is coherent across the 60 cores14 and is inclusive of
the data in the L1 cache. In addition, each core supports 4
hardware threads and has 32 entries of 512-bit-long vector
registers per hardware thread. Our optimization tech-
niques are described next.

II.B.1. Prefetch

The KNC core implements the in-order execution.
This indicates that the processor is prone to stall when the
data operands are unavailable and are being fetched from
the MIC’s on-board dynamic random access memory
(DRAM). It is often recommended15 that more than one
thread be launched per core to help hide the memory
access latency. This method, however, is not enough for

XSBench as the memory load operations are so frequent
that the hardware threads may all encounter memory stall.

To overcome this problem, we adopted the software-
based data prefetch.16 In simplest terms, this technique
loads the data from the far memory (DRAM) to the near
memory (cache) ahead of the computation where the data
will be used. More concretely, when in the i’th iteration of
a for-loop, one may issue a nonblocking, prefetch request
to load the data to the cache that will be used later in the
j’th (j � i) iteration. The difference j � i is called prefetch
distance. It has a direct impact on code performance. If the
distance is too short, the j’th iteration may be reached too
soon before the data are ready and the memory stall still
exists. If the distance is too long, the cache residency time
increases, and the effective cache size is reduced.17 Very
often in this case, the prefetched data may evict previous
useful data or be evicted by the subsequent data from the
cache. On the MIC (as well as most of the modern CPUs),
each prefetch is able to load a 64-byte chunk of data to the
cache. In our code, data prefetch is implemented using the
intrinsic function in the C language. The interface is
_mm_prefetch(addr, type), where addr is the
starting address of the data and type is the prefetch type.
This interface is applicable to both the MICs and CPUs.

Another essential factor to be considered is the
prefetch type. The MICs allow data to reside in the cache
in various ways, as summarized in Table I. The type of
prefetch is determined by three factors: location, tempo-
rality, and exclusiveness. Location includes L1 (because
L2 is an inclusive cache, prefetch to L1 implies to L2) and
L2 cache only. Temporality refers to whether to retain or
evict the data upon the first use. If the data are evicted,
the prefetch type is called nontemporal access (NTA).

TABLE I

Common Prefetch Types on the MIC and CPU*

Processor Mnemonic Purpose

MIC

NTA Load data to L1 and L2 cache;
mark it as NTA

T0 Load data to L1 and L2 cache
T1 Load data to L2 cache only
T2 Load data to L2 cache only;

mark it as NTA
ENTA Exclusive version of NTA
ET0 Exclusive version of T0
ET1 Exclusive version of T1
ET2 Exclusive version of T2

CPU
NTA Load data to L2 and L3 cache;

mark it as NTA
T0 Load data to L2 and L3 cache

*References 14, 31, and 32.
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Exclusiveness refers to the act of invalidating the same
data that appear in other levels of caches or caches of
other cores. We empirically set the prefetch distance and
type to 1 and T2, respectively.

Meanwhile, we manually performed loop unrolling, a
well-known method to improve instruction-level parallel-
ism. “Unrolling the loop by 2” means that the two adja-
cent iterations are combined into one and the cross
sections of two nuclides of the same material are con-
structed together. In our test, it was determined that
unrolling four loops produced the optimal performance.

II.B.2. Vectorization

On the MIC coprocessor, a total of eight double-
precision data values can be manipulated in parallel
through the 512-bit vector registers. Although XSBench is
primarily memory bound, it was found that vectorizing the
cross-section calculation still noticeably improves the
performance. The vectorization is implemented using
MIC-specific intrinsic functions. To use these functions, it
is required that the data be aligned to 64-byte memory
addresses. For the nuclide grid that is an AOS, this means
both the initial memory address and the address of every
element structure in the array should be multiples of 64.
Therefore, each element structure was padded with two
dummy double-precision data.

The optimized algorithm is illustrated in Algorithm 2.
First, preparations are made to determine the address from
which the data need to be prefetched (steps 3 through 6).
Then, the actual prefetch operation is performed. For a
specific nuclide, we prefetch two 64-byte blocks, corre-
sponding to the eight double-precision data for the lower
energy (six actual nuclear data plus two dummy data) and
those for the higher energy. Because the MIC’s cache line
size is also equal to 64 bytes, one instance of prefetch
suffices to give us all the nuclear data for a certain energy.
It follows that when two nuclides are handled at the same
time, a total of four prefetch requests are needed (steps 7
through 10). In the interpolation step (steps 13, 14, and
15), vector operations are used to calculate five cross
sections in parallel. To increase the arithmetic throughput,
step 15 is performed using the Fuse Multiply Add (FMA)
instruction to combine two separate instructions—the
addition and multiplication—into one. For simplicity,
some conditional statements used to handle special cases
are not shown in Algorithm 2. These cases include, for
instance, (1) only one isotope to process for the current
loop; (2) only one isotope to prefetch for the next loop; (3)
two isotopes to process for the current loop and one
isotope to prefetch for the next loop. The conditional

statements avoid false prefetch, which may pollute cache
and incur performance penalty.

II.B.3. Other Technical Considerations

First, the OpenMP’s thread affinity was set to the
“balanced” pattern, whereby 240 threads are evenly
distributed among the 60 cores and every four threads
with consecutive IDs are bound to the four hardware
threads (i.e., logical cores) on the same physical core.
This improves cache utilization because otherwise the
hardware is free to migrate threads across the cores and
cause cache misses. Second, the 2-Mbyte huge page
feature was used, reducing translation lookaside buffer
(TLB) miss. This feature is currently turned on by
default by the MIC’s on-board operating system (OS)
as well as our host OS.

II.C. Tuning XSBench to the CPU Platform

In our laboratory we have two CPUs, a 6-core CPU
based on the Westmere microarchitecture and a 14-core
CPU based on the Haswell microarchitecture. The cores
of both CPUs implement out-of-order execution. When a
memory stall occurs, the processor may proceed with other
instructions that are not dependent on the data being loaded.
This hardware mechanism relaxes the memory limitations
but cannot replace the software tuning. The methods to
optimize XSBench on the MIC are all applicable to the CPU
platform with a couple of minor differences.

First, the prefetch distance and type are different from
MIC. On the CPU platform, the performance appeared
less sensitive to these two factors, shown in Sec. III.B. We
chose 13 and NTA, respectively, in our test. The optimal
loop unrolling level was found to be 6. It should be
pointed out that the prefetch types of Xeon CPUs are
distinct from the MICs’. The data cannot be prefetch
directly to L1 cache. Besides, although types T1 and T2
do exist, they are in fact equivalent to T0. Second, the
single instruction, multiple data (SIMD) instructions are
different from MIC. On the Westmere CPU, the Stream-
ing SIMD Extensions 4 (SSE4) instructions operate on
128-bit registers (two double-precision data) at a time,
while on the Haswell CPU, the Advanced Vector Exten-
sions 2 (AVX2) instructions operate on 256-bit registers
(four double-precision data).

As a general remark, the prefetch and vectorization
methods can potentially be applied to other time-
consuming subroutines of a Monte Carlo program beyond
cross-section construction alone. The requirement is that
these subroutines should have similar structure to cross-
section construction: tight for-loop (i.e., loop with relatively
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few instructions in it, so that the prefetched data still
remain in the cache when they are needed by the proces-
sor in subsequent iterations), sufficient number of itera-
tions (so that the prefetch distance can be increased to the
optimal value), and vectorizable operations (so that they
can be combined into single instructions).

II.D. Tuning XSBench to the GPU Platform

II.D.1. Prefetch

The GPUs adopt warps—a mechanism different from
the MICs and CPUs—to hide memory latency. A warp is
composed of 32 threads. It implements the Single Instruc-
tion, Multiple Thread (SIMT) model, where all the threads
within a warp execute the same instruction. The branches
caused by conditional statements such as if-else are
gracefully handled by the hardware at the cost of instruction
replay. On a GPU, hundreds of warps can be launched
together. When one warp encounters memory stall, other
warps may take over the hardware and be processed. We
followed Ref. 10 to fetch data more efficiently for each warp.
According to the loading outside inner loop method,10 for a
specific nuclide, all of the 12 double-precision data (6 for the
lower energy, 6 for the higher energy, and no padding
applied) are fetched from the GPU DRAM to the register
before computation, using the large data type double2.
Furthermore, according to the unrolling outer loop method,10

loop unrolling is applied such that every iteration handles
two nuclides. Thus, a total of 24 double-precision data are
fetched before computation. This technique applies to the
data that will be used by the computation in the same
iteration and can be seen as a form of data prefetch with
zero distance. Besides, we tested the actual GPU prefetch
instructions with positive prefetch distance. The prefetch
is implemented as Parallel Thread Execution18 (PTX)—GPUs’
intermediate programming language. The interface is asm
volatile(“prefetch.global.[type] [%0];”::
“l”(addr)). However, a performance degradation by up
to �50% was observed. The preliminary result and analysis
are given in Sec. III.C. In addition, we did not use the fuel
sort method mentioned in Ref. 10. This method moves the
cross-section construction for the fuel material to the first
warp of a thread block for divergence reduction using the
GPU shared memory as the buffer.19,20 Further investigation
is still needed to see whether and how this method can be
applied to the traditional history-based Monte Carlo transport
code, where a certain particle is always attached to one
thread regardless of what material it may enter, and fre-
quently swapping all the particle attribute data between
threads may be costly to perform.

II.D.2. Cache

The GPUs have two levels of cache: a per-SM L1 cache
whose size is configurable and a 1536-kbyte global L2
cache.21 In addition, the K40 GPU has a separate, per-SM
texture cache for read-only data. By default, however, the
K40 GPU only uses L2 for load operations on the global
memory.22 We took the following steps to make the most of
GPU caches. (1) According to the “using LDG intrinsics”
method,10 the texture cache is enabled—by using the com-
piler intrinsic __ldg()—to cache the load of cross-section
data. (2) L1 is enabled to cache the load of all other data by
applying -dlcm�ca flag to the compiler. This step was
also taken by Scudiero,20 although not explicitly men-
tioned in Ref. 10. (3) L1 is expanded to 48 kbytes
through the CUDA runtime application programming
interface23 (API).

II.D.3. Execution Configuration

To perform N lookups for XSBench (or more gener-
ally to simulate N particles for a Monte Carlo code) on a
GPU, one needs to properly distribute the task by selecting
the number of threads per block TB and the number of blocks
per grid b. This procedure is called execution configuration.
To select TB we followed the common practice: Query the
compilation statistics and obtain the number of registers each
thread will consume and then search an Excel spreadsheet
developed by Nvidia called CUDA occupancy calculator24

for a TB value that maximizes the GPU occupancy.
To select b, a common way is to let each thread handle

one task, i.e., t � N, where t is the total number of threads to

be launched on the GPU. As a result, b �
t

TB

�
N
TB

. How-

ever, this approach has the disadvantage of large cumulative
thread overhead. The solution is to perform more than one

task per thread, and consequently, b �
N

TB · M
, where M is

the number of tasks per thread. The value M should be
carefully determined. If it is too large, the blocks of threads
launched will be too small and underutilize the GPU
resource throughout the run time. On the other hand, if it is
too small, the GPU will suffer the tail effect.25 To simplify
the task distribution and improve load balancing, we adopted
the persistent thread method.26 The key concept is that b is
now also chosen from the CUDA occupancy calculator such
that the total t threads saturate the GPU resource exactly. All
the threads are launched at the same time and persist
throughout the GPU program. They are effectively treated as
if they are physical hardware threads.26 The convenience is

that M �
N
t

, which is identical to the task distribution
approach on the CPU or MIC. Using the persistent thread
method, it can be determined that b � 15 and TB � 512, so
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that at runtime the total number of resident threads for the
GPU-based XSBench code is t � bTB � 7680.

II.E. Programming Environment and
Hardware Specifications

The compiler used for the CPU, MIC, and GPU
host code was Intel icc version 15.0.6. The compiler for
the GPU device code was nvcc version 6.5. All the
codes were compiled with -O1 optimization level. Any
compiler option that is likely to trade accuracy for
performance was avoided. The parallel Xorshift pseu-
dorandom number generator ported from Nvidia’s
cuRAND library27 was used in the parallel cross-section
construction kernel.

The hardware specifications are listed in Table II.
On the CPU, hyperthreading was enabled. On the MIC,
each physical core by default permits 4 hardware
threads, so a total of 240 threads was used. On the
GPU, the error-correcting code (ECC) function was
turned on, and the GPU Boost function was enabled,
which can dynamically overclock the device as long as
the temperature and power allow. It is worth noting that
the HPC Top-500 ranking has been using the number of
streaming multiprocessors (SMs) as the core count.28

This is more reasonable and less misleading than quot-
ing the number of streaming processors (SPs) only,
given that the functionality of a GPU SP is not com-
parable to that of a CPU core.

III. RESULTS AND DISCUSSIONS

III.A. Compute Performance

The performance of XSBench on different computing
platforms is summarized in Table III. On each platform,
the performance of the tuned code is better than the
original implementation. The speedup factor was found to
be 1.24� on the Westmere CPU, 1.53� on the Haswell
CPU, 2.31� on the KNC MIC, and 5.98� on the Kepler
GPU. The in-order MIC cores are more sensitive to the
memory stall than the out-of-order CPU cores, so the

effect of data prefetch is more remarkable on the MIC.
The tuned GPU code benefits in part from the expanded
48-kbyte L1 cache. If the size is kept as the default 16
kbytes, the performance gain over the original code on the
GPU will reduce from 5.98� to 2.97�.

Reference 10 reports that the GPU code performed
11 955 176 lookups/s on the K40 GPU. Considering
that Ref. 10 applies an additional fuel sort method not
adopted in our study and that this method contributes to
�10% performance improvement, our result is in good
agreement with those reported in Ref. 10 for the tuned
GPU program. Furthermore, Ref. 10 reports 1 321 943
lookups/s on a six-core Sandy Bridge CPU with hyper-
threading enabled. This is 18% slower than our tuned
code on the one-generation-older Westmere CPU. It is
believed that in their study the CPU code was likely not
optimized.

To make a more reasonable and fair comparison in
this study, the speedup factor of the tuned code on one
platform over the other is reported in Table IV. The code
on the state-of-the-art Haswell CPU has significantly bet-
ter performance than the three-generations-older West-
mere CPU. The KNC MIC is surprisingly 63% faster than
the Haswell CPU. The Kepler GPU appears to be the
fastest computing device in our test, having a 35% edge
over the MIC.

TABLE II

Hardware Specifications

Processor Microarchitecture Core Count Base Clock (GHz) Price (US$) Launch Date (quarter-year)

Intel X5650 Westmere 6 (12 hyperthreads) 2.66 996 1-2010
Intel E5-2697 v3 Haswell 14 (28 hyperthreads) 2.6 2702 3-2014
Intel 5110P KNC 60 (240 hyperthreads) 1.053 2437 4-2012
Nvidia K40 Kepler 15 SMs (2880 SPs) 0.745 3300 4-2013

TABLE III

Performance of XSBench for H-M Large Problem

Processor Code Performance (106 lookups/s)

Westmere CPU
Original 1.26
Tuned 1.83

Haswell CPU
Original 3.07
Tuned 4.64

KNC MIC
Original 3.38
Tuned 7.58

Kepler GPU
Original 1.71
Tuned 10.2
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III.B. Performance Study of the MIC and CPU

Figure 2 shows how the performance varies with the
prefetch distance and type. A CPU core has excellent
single-thread performance due to its high frequency and
out-of-order execution mechanism. Prefetching multiple
iterations ahead of computation thus reduces unnecessary
cache residency time and improves latency hiding. The
performance in this study appears somewhat independent
of the prefetch distance and type when the former param-
eter exceeds 5. In contrast, on the MIC, prefetching just
for the next iteration is opportune. Any greater prefetch
distance results in performance degradation. Prefetching
to the coherent L2 cache alone brings the best perfor-
mance, regardless of the temporality and exclusiveness of
the data, while prefetching to L1 slows the code in all
cases, suggesting a larger overhead involved in this
process.

The optimization techniques reported here have dif-
ferent impact levels on MIC’s performance, as seen from
Table V. Here, we used the fully optimized code as the
baseline (suppose the performance is P0 in lookups per
second). We switched off each type of optimization
individually (suppose the performance now becomes
Pi) and calculated the value (P0 � Pi)/P0 � 100%. The
default huge page feature offered by the recent OS on
the MIC was found useful in reducing the TLB misses.
The results suggest that among all software-based
approaches, data prefetch stands out as the most effi-
cient on the MIC.

III.C. Performance Study of the GPU

We experimented with PTX-based prefetch on the
GPU with different prefetch distance and type but
observed performance degradation to varying degrees, as
shown in Fig. 3. One simple explanation29 is that the
GPU has thousands of in-flight threads and that the
overhead of thousands of outstanding memory requests
may offset the advantage of prefetch. Additionally, the
cache is a scarce resource on the GPU. The cache size
per thread is significantly lower than that of the CPU
and MIC (Refs. 19 and 20). Consequently, the GPU is
more prone to cache pollution. Profiling on the cache
behavior can shed light on this problem, as suggested
by Refs. 19 and 20. Figure 3 illustrates part of the
profiling results. When the data are prefetched to L2

TABLE IV

Speedup Factors of the Tuned Codes

Processor Speedup

Westmere CPU Baseline
Haswell CPU 2.54� Baseline
KNC MIC 4.14� 1.63� Baseline
Kepler GPU 5.59� 2.20� 1.35�

Fig. 2. Impact of prefetch distance and type over performance on the KNC MIC and Haswell CPU.
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cache only, as the prefetch distance increases, more
useful data are evicted from L2, and the hit rate at L2
for all read requests from L1 becomes lower, causing
more accesses to the long-latency DRAM. When the
data are prefetched to both the L1 and L2 cache, the
same problem occurs, and useful data are also evicted
from the L1 cache in addition, making the performance
even worse. It should be pointed out that some of the
profiling results are not fully understood. For instance,
for the L2-only case, a slight increase in the L1 hit rate
was observed. More detailed quantitative analysis
needs to be done in the future.

III.D. Preliminary Test of Hash-Based Energy Lookup
on the MIC

The hash-based energy lookup method9 currently
implemented in MCNP 6.1.1 (Ref. 30) is a memory-
saving alternative to the double-indexing method used
in XSBench. For the H-M large problem, in XSBench
the unionized energy grid and its associated index array
require �5.4 Gbytes of memory, while in MCNP a

much smaller index array is needed (�10.8 Mbytes).
The trade-off is the performance, specifically the cost
of performing additional binary search operations for
each nuclide of a material. We adapted XSBench to the
hash-based energy lookup method. The profiling results
of the CPU code indicate that the binary search takes up
�36% of the loop in time.

To see how this change affects the optimization effec-
tiveness, we did the following preliminary test: data
prefetch distance 0, type T2, loop unrolling level 2, vec-
torization enabled. The result is shown in Table VI. On
the MIC the performance improvement is only �12%,
much less than that of XSBench. The reason is the binary
search inevitably causes cache pollution and interferes
with data prefetch.

We also experimented data prefetch directly on the
binary search itself. The while loop of the binary search
contains a branch structure that determines whether to
raise the lower bound or lower the upper bound,
depending on whether the given energy is greater than
the energy grid point at the mid index. Access to the
energy grid point causes memory latency. We therefore
added two prefetch operations immediately before the
branch structure to prefetch two energy grid points for
the next iteration, corresponding to two possible cases
where the lower bound or upper bound becomes
the mid index in the next iteration. Because only one
8-byte energy data out of two 64-byte cache lines will
be actually used, this method puts more pressure on the
cache. It was found that with this method alone, the
code became faster by �6%. However, this method and
the above optimizations do not add up. When used
together, a slight degradation of �3% was even observed.
Tuning the hash-based energy lookup appears to be a
challenge on the MIC.

TABLE V

Impact of Different Optimization Techniques on the MIC

Optimization
Performance
Difference

Reason for
Performance
Improvement

Data prefetch 43.0% Reduce cache misses
Loop unrolling 29.8% Improve instruction

level parallelism
Huge page 51.2% Reduce TLB misses
Vectorization 11.0% SIMD
Thread affinity 6.7% Reduce cache misses

Fig. 3. Performance degradation of the GPU code is observed when using PTX-based prefetch. Three sets of data are shown here
as a function of the prefetch distance: the performance (lookups per second), the hit rate at L1 cache for global loads, and the hit
rate at L2 cache for all read requests from L1 cache.
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IV. CONCLUSIONS

We have conducted an in-depth optimization study
on the proxy neutronics application XSBench for three
hardware platforms: CPU, MIC, and GPU. The following
conclusions can be drawn. (1) Data prefetch is crucial to
all the platforms, including the CPU. The cross-section
construction problem is memory bound. One has a

uniform optimization goal on different platforms—to hide
the memory access latency. Our results suggest that
data prefetch is an effective technique to achieve this goal.
(2) To fully exploit the hardware, manual tuning must be
performed. In general, both the GPU and MIC provide
good API supports that make direct porting straightfor-
ward, but the performance gain may be disappointingly
marginal. A decent improvement can be enabled by
platform-specific code tuning. Compared to the original
code, the optimized XSBench is found to be 1.51� faster
on the CPU, 2.25� faster on the MIC, and 5.98� faster
on the GPU. (3) The Intel KNC MIC and high-end Nvidia
Kepler GPU outperform the high-end Intel Haswell CPU.
The difference, however, is not as large as we had
expected. The speedup factors are 1.63� and 2.20� ,
respectively.

APPENDIX

ALGORITHMS

Algorithm 1: Original XSBench Algorithm

TABLE VI

Performance of XSBench Adapted to the
Hash-Based Energy Lookup Algorithm

Processor Code
Performance

(106 lookups/s)

Westmere CPU Original 0.768

KNC Original 2.82
Tuned 3.16
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Algorithm 2: Optimized Algorithm for MICs and CPUs

For illustration purposes, here, the loop unrolling level is set to 2, and the additional conditional statements
used to handle special cases and avoid false prefetch are not shown. The optimizations are concentrated on reducing
memory latency and increasing vectorization intensity. The underlying double-indexing search method remains the
same with the original XSBench.
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