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Hardware accelerators are currently becoming increasingly important in boosting high performance
computing systems. In this study, we tested the performance of two accelerator models, Nvidia Tesla
M2090 GPU and Intel Xeon Phi 5110p coprocessor, using a new Monte Carlo photon transport package
called ARCHER-CT we have developed for fast CT imaging dose calculation. The package contains three
components, ARCHER-CTCPU, ARCHER-CTGPU and ARCHER-CTCOP designed to be run on the multi-core
CPU, GPU and coprocessor architectures respectively. A detailed GE LightSpeed Multi-Detector Computed
Tomography (MDCT) scanner model and a family of voxel patient phantoms are included in the code to
calculate absorbed dose to radiosensitive organs under user-specified scan protocols. The results from
ARCHER agree well with those from the production code Monte Carlo N-Particle eXtended (MCNPX). It
is found that all the code components are significantly faster than the parallel MCNPX run on 12 MPI pro-
cesses, and that the GPU and coprocessor codes are 5.15–5.81 and 3.30–3.38 times faster than the parallel
ARCHER-CTCPU, respectively. The M2090 GPU performs better than the 5110p coprocessor in our specific
test. Besides, the heterogeneous computation mode in which the CPU and the hardware accelerator work
concurrently can increase the overall performance by 13–18%.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a substantial increase in the use
of heterogeneous systems for high performance computing. The
traditional CPUs are accompanied by the hardware accelerators,
which are well known for their high energy efficiency (Keckler
et al., 2011), to largely increase the computing power. The com-
pute-intensive and parallelizable tasks can be offloaded through
the Peripheral Component Interconnect Express (PCIe) to the
plug-and-play accelerators, such as the Graphics Processing Unit
(GPUs) and the Many Integrated Core (MIC) coprocessors, for effi-
cient parallel execution. By June 2014, Nvidia GPUs have been uti-
lized in 46 most powerful supercomputer systems worldwide on
the top-500 list and Intel coprocessors in 19 systems (Top500,
2014). Among them, the No. 1 supercomputer Milky Way-2 devel-
oped by China contains 48,000 Intel Xeon Phi 31S1P MIC coproces-
sors (57 cores per coprocessor), and the No. 2 Titan developed by
Oak Ridge National Laboratory contains 18,688 Nvidia K20x GPUs
(14 Streaming Multiprocessors per GPU).

Since the GPUs with high-level programming language support
were first introduced by Nvidia in 2006, several groups have
applied them to Monte Carlo (MC) photon and electron transport
simulations. Badal and Badano (2009, 2011) developed the MC-
GPU code for X-ray radiography simulation and radiography dose
calculation, and reported a speedup of 110 over the CPU-based
MC code, PENELOPE (Baró et al., 1995). Jia et al. (2010, 2011) devel-
oped the gDPM code based on the CPU code DPM originally written
by Sempau et al. (2000), and observed a speedup of 69.1–87.2 over
the CPU code for radiotherapy dose calculations. Hissoiny et al.
(2011) developed the GPUMCD code for coupled electron-photon
transport and reported that for electron transport the speedup fac-
tors were 210 and 1200 compared to the general-purpose codes
DPM and EGSnrc, respectively, while for photon transport the
numbers were 20 and 940. Liu et al. (2012) developed the CPU
and GPU-based MC codes for CT organ dose calculation. On a single
GPU, the code was found to be 19 times faster than the CPU code
and 42 times faster than MCNPX (Pelowitz, 2008). The speedup
factors were doubled on a dual-GPU system. Chen et al. (2012)
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developed an MC tool for CT dose calculations using multi-slice CT
(MSCT), flat-detector CT (FDCT), and micro-CT scanners, and
observed a speedup factor in the range of 40–50 using a single
GPU compared to a single-core CPU.

However, two major problems have not been fully addressed
thus far. First, while the achieved speedup factors are impressive
in many of the pioneering studies, a fair performance comparison
has rarely been emphasized where the CPU is also parallelized to
make full use of the available hardware resource. Second, the Intel
Xeon Phi MIC coprocessor as a new type of hardware accelerator is
a strong competitor of the Nvidia GPU, but its application in MC
simulation is still absent in the current literature.

To address these problems, our group have been developing a
new parallel MC code called ARCHER (Accelerated Radiation-trans-
port Computation in Heterogeneous EnviRonments) (Xu et al.,
2013). The code is designed to accelerate radiation transport sim-
ulation in a variety of applications and to make objective evalua-
tion between different platforms. The blueprint of ARCHER is
shown in Fig. 1.

In this paper, we describe the development of the photon trans-
port module called ARCHER-CT for fast Monte Carlo CT imaging
dose calculation. The module has three components, ARCHER-
CTCPU, ARCHER-CTGPU and ARCHER-CTCOP that are tested on an Intel
Xeon X5650 6-core CPU, an Nvidia Tesla M2090 GPU and an Intel
Xeon Phi 5110p MIC coprocessor, respectively.

2. Materials and methods

2.1. Physics model

ARCHER-CT simulates the physics of low-energy photons (1–
140 keV) in heterogeneous media, where the photoelectric effect,
incoherent and coherent scattering are dominant interactions.
For the photoelectric effect, the ensuing primary and secondary
fluorescence are both explicitly simulated for Z P 31 using the
method by Everett and Cashwell (1973). For the incoherent and
coherent scattering interactions, the electron’s binding effects are
being accounted for using the method by Cashwell et al. (1973).
Secondary electrons are not simulated, and their energy is assumed
to be locally deposited. This is a valid assumption because for the
CT application the Continuous Slowing Down Approximation
(CSDA) range of electrons inside the phantom is generally one
order of magnitude smaller than the dimension of a voxel. The
Application
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Fig. 1. ARCHER is a versatile research tool for various applications. The code has
several components designed for different hardware architectures. The modern
hardware architectures usually provide multiple programming models for users to
choose from.
capability of electron transport is developed as another module
of ARCHER for the radiation therapy application (Su et al., 2014).

The dosimetric quantity of interest in the MC calculation is the
absorbed dose D. Under the Transient Charged Particle Equilibrium
(TCPE) condition (Attix, 2008), which is usually satisfied in the
human body, it is equal to the collision kerma Kc . ARCHER-CT
counts D using MCNP’s pre-tabulated heating numbers that repre-
sent the average energy deposition per collision (X-5 Monte Carlo
Team, 2003). The analytical expression of D is given by Eq. (1),
where m is the mass of the tallied organ or tissue, E is the photon
energy, t is the time, V is the tallied space, X

!
is the solid angle, H is

the heating number representing the average energy deposition
per collision,~r is the spatial vector, Rt is the total linear attenuation
coefficient, and / is the angular flux of the photon.
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In MC method, this quantity is estimated using Eq. (2), where DD
denotes the dose increment in a single collision event.

DD ¼ HðEÞ
m

ð2Þ

Special treatment is applied to the calculations of dose to the bone
surface and red bone marrow (Schlattl et al., 2007). First, since the
bone surface is as thin as 10 lm and cannot be directly modelled in
voxel phantoms, its dose is approximated by the dose to the spong-
iosa (Zhang et al., 2009). Second, the dose to the red bone marrow
DRBM is derived from the dose response function RRBMðEÞ, an
energy-dependent weighting factor (Zhang et al., 2009), shown in
Eq. (3).
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In MC method, this quantity is estimated using the collision
estimator in Eq. (4).

DDRBM ¼
RRBMðEÞ

mRtð~r; EÞ
ð4Þ
2.2. Patient model

ARCHER-CT contains a family of computational human models
previously developed by our group, shown in Fig. 2. They include
VIP-Man (Xu et al., 2007), RANDO (Wang et al., 2004), RPI-Pregnant
women with 3, 6 and 9 months of gestation (Xu et al., 2007), ten
extended RPI-Adult females and males representing patients of dif-
ferent Body Mass Indices (BMI), from normal to overweight and to
morbidly obese (Zhang et al., 2009; Na et al., 2010; Ding et al.,
2012).

2.3. CT scanner model

ARCHER-CT has a built-in GE multi-detector CT (LightSpeed 16
Pro) scanner model developed by Gu et al. (2009), shown in Fig. 3.
In this study it is hardcoded into ARCHER-CT. The model has an X-
ray point source located at the centre of a sphere. A ‘‘cookie cutter’’
box (Pelowitz, 2008) intersects with the sphere, creating a slot that
allows photons to pass and consequently forming a fan beam. The
X-ray beam then enters a bowtie filter, whose geometric parame-
ters are determined through an iterative trial-and-error approach
to ensure that the simulation result converges to the experimental
CTDI values (Gu et al., 2009). The energy spectrum of the source is
generated from Xcomp5r (Nowotny and Höfer, 1985). ARCHER-CT
allows users to specify the pitch value and choose from a number
of predefined parameters, including scan mode (helical, axial),



Fig. 2. ARCHER-CT has a built-in phantom library. (a) VIP-Man, (b) RANDO, (c) RPI-Pregnant women with 3, 6 and 9 months of gestation, (d) RPI-Adult females with body
weights of 60, 74, 89, 100 and 122 kg, (e) RPI-Adult males with body weights of 73, 86, 103, 117 and 142 kg.

Fig. 3. Trajectory of the CT scanner model in a helical scan. For illustration purpose,
a large pitch value is selected.
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bowtie filter type (head, body), beam collimation (1.25, 5, 10, or
20 mm) and tube voltage (80, 100, 120 or 140 kVp).
2.4. Hardware architectures

In this study, the heterogeneous computing system is a Tyan
FT77B7015 server equipped with an Intel Xeon X5650 CPU (West-
mere microarchitecture), an Nvidia Tesla M2090 GPU (Fermi mic-
roarchitecture), and an Intel Xeon Phi 5110p coprocessor
(Knights Corner microarchitecture). The CPU has 6 cores, and each
core supports 2 Intel ‘‘hyperthreads’’ (Intel, 2003). The host system
has 16 GB memory.

The GPU is composed of 16 Streaming Multiprocessors (SMs)
that share a unified 768 KB L2 cache. Each SM has a bundle of
Streaming Processors (SPs) and a local 16/48 KB L1 cache. The par-
allelism is achieved on two scales: on the global GPU scale, a preset
number of GPU threads are grouped into blocks, and the blocks are
dispatched by a global thread scheduler to the SMs for indepen-
dent and simultaneous execution. On the local SM scale, every 32
threads in a block form a warp and execute the same instruction
at a time, which is called Single-Instruction, Multiple-Thread
(SIMT) model. Instructions from each warp are issued by a local
warp scheduler to a group of SPs for pipelined execution. It should
be pointed out that, the number of GPU threads is user-specified,
but the number of active threads that are resident on the GPU at
runtime is always problem-dependent and is limited by the hard-
ware capacity such as the size of registers. Threads will be resident
only when hardware resources become available due to the termi-
nation of previous resident threads. Programming on Nvidia GPU
platform requires an understanding of the interplay between hard-
ware architecture and programming models, and the use of a high-
level API called Compute Unified Device Architecture (CUDA)
(Nvidia, 2013a). The GPU has 6 GB onboard memory.

The Intel Xeon Phi coprocessor consists of 60 enhanced Pen-
tium-generation cores placed in a ring interconnect, each having
private 64 KB L1 and 512 KB L2 caches. The L2 caches are coherent
across all cores (Intel, 2013c). Each core supports 4 ‘‘hardware
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threads’’. There are both similarities and differences between the
hardware threads on a coprocessor and the hyperthreads on an
Intel CPU. On the one hand, in both implementations threads have
their private architectural state such as the registers, while sharing
the execution resource such as the execution engine and the cache.
On the other hand, the hardware thread on a coprocessor is
designed for in-order execution that typically requires 2–4 threads
per core for optimal performance, while the hyperthread is for out-
of-order execution, whereby it may be beneficial or detrimental to
use more than one threads, usually being case-dependent. Pro-
gramming on Intel Xeon Phi coprocessor requires lower learning
curve, because the coprocessor can be considered as a many-core
chip not so different from the multi-core CPU, and because it
allows a variety of parallel paradigms, including the conventional
MPI, OpenMP, POSIX Threads and the new offload pragma (Intel,
2013b) and Cilk Plus (a C language extension for multithreaded
parallel computing) (Kim and Voss, 2011). The coprocessor has
8 GB onboard memory.

2.5. Implementation details

The workflow of ARCHER for CT scan simulation is described as
follows. (1) The code loads the patient and CT scanner models as
well as the photo-atomic interaction database to the memory
and performs preprocessing. (2) According to the pre-specified
CT scan range, the computation task is divided into a group of inde-
pendent batches that are treated in a sequential manner. Every
batch simulates one scanner rotation where a pre-set number of
X-ray photons are tracked in parallel by many threads. The per-
batch organ doses and the statistical quantities are calculated
and stored. (3) When all the batches have been treated, the overall
organ doses and statistical uncertainties are calculated.

The GPU code is written in C using Nvidia’s CUDA API. To
improve the performance, three issues are carefully considered:
the memory usage, execution configuration and concurrency. The
GPU provides several types of memory with different features for
data storage. The constant memory is cached, fast but very small.
It is therefore used to store a few physical constants. The global
memory is slow but large and cached. It is used to hold the large
cross-section tables, the phantom and the dose tally data for fre-
quent access. The texture memory is a special type of global mem-
ory. It has a capability called ‘‘hardware filtering’’ which is to
automatically perform linear interpolation in the process of texture
fetching (i.e. memory reading) without the need of any code. We
experimentally let the texture memory store and interpolate the
pre-calculated cumulative distribution function (CDF) tables that
are used to sample the polar angle for the incoherent and coherent
scattering. The shared memory is fast but very small. It is only used
to buffer the temporary data coming from the global memory at
the end of each batch, where the dose counters from each thread
are collected and added up together using Nvidia’s reduction algo-
rithm (Harris, 2011).

The execution configuration encompasses the determination of
a proper number of threads per block T and the number of blocks
per grid B, as well as the proper setup of the GPU hardware. In
ARCHER-CTGPU, each thread is assigned a maximum of m photons.
The lower limit of m is achieved when the number of threads is
maximized such that the total size of dose counters are equal to
the GPU memory capacity (6 GB); the upper limit is achieved when
the number of threads is minimized such that the GPU is narrowly
saturated, i.e. all the computing resource has just been utilized. For
the simulation of a batch of n ¼ 107 photons on the M2090 GPU
and 44 dose counters per thread, it can be found that
1 6 m 6 1233. We set m ¼ 100 in our simulations as an appro-
priate choice. The total number of threads to launch on the GPU t is
then n=m, where n is the total number of histories per batch. The
number of blocks per grid T is derived from Nvidia occupancy
spreadsheet (Nvidia, 2013b). It follows that the number of blocks
per grid B is t=T . The GPU hardware is configured through the man-
agement tool ‘‘nvidia-smi’’ (Nvidia, 2013c). The ‘‘persistent mode’’
is turned on to reduce the time spent on loading the GPU driver.

The third consideration is the concurrency, referring generally
to the ability of a system to perform multiple operations simulta-
neously (Rennich, 2011). Two types of concurrency are investi-
gated: the single GPU stream concurrency and the CPU-GPU
concurrency. The first type of concurrency aims to improve the
performance of a single GPU. Because of the random nature of
MC simulations, different blocks tend to take different time to
complete their jobs. When the simulation of a certain batch is
nearing its end, the resident blocks may not suffice to saturate
the hardware, leading to a decrease in the GPU occupancy. For a
simulation consisting of a sequence of batches, the period of low
occupancy can be accumulated to negatively affect the overall
GPU performance. This problem can be effectively solved by using
the GPU stream. A stream refers to a sequence of commands that
execute in order; multiple streams may run concurrently (Nvidia,
2013a). We attach different GPU kernels to separate streams, so
that when one kernel on a stream is about to finish and does not
fully occupy the hardware resource, kernels on other streams are
able to automatically step in and consume the rest of the resource.
The second type of concurrency aims to achieve the heterogeneous
computing, i.e. making the CPU and GPU work collaboratively.
These two computing units adopt an asynchronous execution
mode in the sense that once the GPU kernels are launched the con-
trol is immediately returned to the CPU, and that the CPU remains
idle until the GPU finishes computation (Nvidia, 2013a). To use the
untapped multi-core CPU resource, a simplified version of
ARCHER-CTCPU with only the use of multithreading is integrated
with the GPU code and executed right after the GPU kernel launch.

The CPU and coprocessor codes are the same, written in C using
the MPI/OpenMP model. The three factors described above also
apply to the coprocessor code. The problem pertaining to memory
usage is simpler, mainly because the coprocessor exposes to users
a uniform type of memory to store all the input and output data. To
reduce the memory allocation cost, the memory page size is explic-
itly tuned up from 4 KB to 2 MB using a dedicated ‘‘huge page’’
library (Intel, 2013a). With regard to the execution configuration,
we let the coprocessor work in the native execution mode (Intel,
2013c), whereby the executable file, input data and MPI/OpenMP
libraries are manually uploaded to the coprocessor, and then the
entire code including both the serial and parallel parts are run on
it. We issue 1 MPI process and 240 threads on the coprocessor
and bind every 4 consecutive threads to the same core. Because
the coprocessor does not have the occupancy problem, the task
distribution is very straightforward: the photons in a batch are
evenly distributed among the all the 240 threads. The concurrency
of the CPU and coprocessor is conveniently obtained by using
Intel’s MPI management tool (Intel, 2014). The CPU-only and
coprocessor-only codes are separately compiled, then launched
simultaneously by the MPI tool that implicitly takes care of the
data transfer.

To ensure a fair performance comparison for the three different
hardware architectures the following items are considered. (1)
Error-Correcting Code (ECC) is enabled on the GPU and coproces-
sor. Despite causing a performance reduction of approximately
10%, the ECC functionality improves the hardware reliability when
a large amount of jobs are run for a long period. (2) The same
pseudo-random number generators Xorshift are used in all the
codes (Marsaglia, 2003; Nvidia, 2012). (3) All the codes have
approximately the same level of optimization specified by appro-
priate compiler options. For example, all variants of ARCHER-CT
are compiled with a high optimization level -O3. Another example
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is that to improve the performance, some floating point operations
are replaced by their faster and less accurate surrogates. The com-
piler options are -ffast-math for the CPU, -use_fast_math for
the GPU, and -fp-model fast=2, -no-prec-div, -no-prec-
sqrt, -fast-transcendentals for the coprocessor.
3. Results

3.1. Verification with MCNPX

ARCHER-CT is verified against the production code Monte Carlo
N-Particle eXtended (MCNPX) v2.6.0. The whole-body scan over
three computational phantoms is simulated respectively, including
RPI-Pregnant woman of 9-month gestation, RPI-Adult female obese
phantom with 122 kg body weight and RPI-Adult male obese phan-
tom with 142 kg body weight. The CT scan protocol is 20 mm beam
collimation, 120 kVp and axial scan mode with a pitch of 1:1. 107

photons are simulated per scanner rotation, which restricts the sta-
tistical uncertainty of the overall doses to 0.5%. The absorbed doses
to organs/tissues of dosimetric interest listed in ICRP 103 recom-
mendations are calculated, and compared to the results of MCNPX.
The percentage difference between ARCHER-CTGPU and MCNPX
defined as ðARCHER� CTGPU �MCNPXÞ=MCNPX�100% is shown
in Figs. 4–6. The absolute percentage difference across these three
cases is 0.38% on average, indicating an excellent agreement.
Besides, the difference between the results by ARCHER-CTGPU and
those by ARCHER-CTCPU or ARCHER-CTCOP is found to be negligible.
The difference itself is primarily caused by the unique number of
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threads and the number of photons simulated per thread (hence
the unique number of pseudo-random number streams and the
amount of random numbers consumed by each stream) used for
each code.

3.2. Comparison of computing efficiency

The parallel execution is configured as follows. The parallel
MCNPX uses 12 MPI processes on the Intel Xeon X5650 6-core
CPU. ARCHER-CTCPU uses 1 MPI process and 12 threads on the same
CPU. ARCHER-CTGPU uses 105 light-weight GPU threads on the Nvi-
dia M2090 GPU for each batch, and the actual number of resident
threads at runtime is approximately 8000. ARCHER-CTCOP uses 1
MPI processes and 240 threads on the Intel Xeon Phi 5110p
coprocessor.

The computation time by different codes using different phan-
toms is listed in Tables 1–3. All the ARCHER-CT variants are com-
putationally efficient and are substantially faster than the
parallel MCNPX. It is important to mention that the remarkable
performance difference has three causes: (1) MCNPX used in this
study is a precompiled executable with -O1 optimization level
and double precision floating point (FP64) calculation, while
ARCHER-CT applies more aggressive -O3 optimizations and single
precision (FP32) calculation. (2) There are several major algorithm
differences. First, ARCHER-CT uses an improved method for biased
source sampling, in which the initial photon position is bounded by
the slot created by the ‘‘cookie cutter’’ object mentioned in Section
2.3, leading to a higher acceptance rate in the rejection sampling
process. Second, ARCHER-CT uses Woodcock delta tracking method
-0.5 0.0 0.5 1.0 1.5 2.0

ntage difference [%]

omen (9-month gestation) phantom. A total of 8:2� 108 photons are simulated.
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to sample the path-length, which is a more efficient alternative to
the conventional surface-to-surface ray-tracing in MCNPX. Third,
to accelerate the simulation process, ARCHER-CT obtains the polar
angle of the scattering interaction by table lookup and interpola-
tion instead of the on-the-fly rejection sampling used in MCNPX.
(3) MCNPX is a general-purpose production MC code that supports
a wide spectrum of applications beyond medical physics alone. In
contrast, ARCHER-CT is a specialized code developed specifically
for CT simulations, and has been optimized for that specific class
of computational models.

Because of the above reasons, we use ARCHERCPU as the baseline
to derive the speedup factors when comparing different computing
platforms. While both are much faster than the CPU baseline, the
GPU code is found to outperform the coprocessor code in all the
three test cases by 55–72%. Besides, the heterogeneous computing
mode where the GPU and CPU work concurrently produces a per-
formance gain of 13–15% compared to the case where the GPU
works alone. Likewise, the collaboration between coprocessor
and CPU makes the simulation faster by 18% than a single
coprocessor.
4. Discussion

4.1. Atomic summation versus parallel summation

The GPU code launches thousands of active threads at runtime.
There are two typical ways to register the photon energy deposi-
tion from each thread. One is the atomic summation, which serial-
izes the addition operations from different threads but requires
less memory space. The other is the parallel summation, which
has each thread independently keep their individual copy of the
dose data until the global reduction and is more memory intensive.
For the former method, however, as the problem size scales up, the
numerical error will become increasingly noticeable, as illustrated
by Fig. 7. In this test case, dose to the lung in a chest region CT scan
is calculated. The atomic summation fails after the number of pho-
tons exceeds 108, the result being smaller than the true value. This
deviation is due to the fact that as the sum becomes larger, more
and more low-order digits of a small floating point number added
to it are discarded. In contrast, the result obtained by parallel sum-
mation maintains good consistency, being 0.8% different from
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Table 1
Computation time by MCNPX, ARCHERCPU, ARCHERGPU, and ARCHERCOP using RPI-
Pregnant women (9-month gestation) phantom.

Code Execution time [min] Speedup

parallel MCNPX (12 MPI processes) 479.89 –
parallel ARCHERCPU 8.03 Baseline
ARCHERGPU 1.38 5.81�
ARCHERGPU+CPU 1.23 6.54�
ARCHERCOP 2.38 3.38�
ARCHERCOP+CPU 2.02 3.98�

Table 2
Computation time by MCNPX, ARCHERCPU, ARCHERGPU, and ARCHERCOP using RPI-
Adult female obese phantom (122 kg).

Code Execution time [min] Speedup

Parallel MCNPX (12 MPI processes) 460.28 –
Parallel ARCHERCPU 10.59 Baseline
ARCHERGPU 2.06 5.15�
ARCHERGPU+CPU 1.81 5.85�
ARCHERCOP 3.21 3.30�
ARCHERCOP+CPU 2.72 3.89�
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MCNPX result. In this method, which is based on the classic pair-
wise summation, the two floating pointer numbers added together
are generally not several orders of magnitude different; hence a
smaller numerical error. Because of this consideration, in
ARCHER-CT each thread holds its individual dose counters, and
the parallel summation technique (implemented through Nvidia’s
fast algorithm (Harris, 2011)) is used to gather the results from a
large number of counters for the organ dose calculation.
Sometimes the atomic summation may appear inevitable. For
example, when a 3-D dose distribution is desired, it is not feasible
to have each thread hold a large tally matrix with the same size of
a voxelized phantom, due to the limited amount of memory avail-
able. The numerical errors introduced by the atomic operation can
be circumvented by using the double precision floating point arith-
metic. Although currently the double precision atomic addition is
not directly supported by the CUDA GPUs, a compare-and-swap



Table 3
Computation time by MCNPX, ARCHERCPU, ARCHERGPU, and ARCHERCOP using RPI-
Adult male obese phantom (142 kg).

Code Execution time [min] Speedup

Parallel MCNPX (12 MPI processes) 1421.73 –
Parallel ARCHERCPU 11.48 Baseline
ARCHERGPU 2.23 5.15�
ARCHERGPU+CPU 1.93 5.94�
ARCHERCOP 3.44 3.33�
ARCHERCOP+CPU 2.92 3.94�
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algorithm devised by Nvidia can be used as an effective emulation
method (Nvidia, 2013a). The disadvantage is that this method can
greatly increase the computation time.
4.2. Performance bottleneck

Despite the good performance of the GPU and coprocessor code
observed in this study, it should be pointed out that the capability
of floating point calculation on these two hardware accelerators is
still underutilized.

For the Nvidia GPU, there are two major limiting factors, the
branch divergence and the scattered memory access pattern, both
stemming from the statistical nature of MC method. The GPU hard-
ware has an elegant mechanism to handle the divergent branches
while maintaining the SIMT execution model. For instance, when
encountering an if-else branch, the GPU picks up one of the branch
to execute. The threads in a warp that are not supposed to fall into
that branch will be temporarily masked out (i.e. their operation has
no effect on the memory), until that branch is finished and the
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Table 4
Profiling result of ARCHERGPU. The simulation is a single axial CT scan over the abdomina

Metric Meaning

Branch efficiency Ratio of non-divergent branches to total br
Warp execution efficiency Ratio of the average active threads per war

multiprocessor
Global load transactions per warp

request
Average number of global memory load tra
other branch is started where the threads are reactivated. Code
with frequent occurrence of divergence typically leads to many
disabled threads. To analyse ARCHERGPU quantitatively, we use
Nvidia’s tool ‘‘nvprof’’ (Nvidia, 2013d) to profile the code. The data
are shown in Table 4. The high branch efficiency means that for our
calculation, quite counter-intuitively, the threads within a GPU
warp tend to uniformly follow the same branch for most of the
cases. However, the low warp execution efficiency indicates that
those rare threads that diverge from others tend to execute a large
amount of instructions, during which period their peers are
masked out and a waste of the GPU resource results.

Furthermore, the performance of the GPU code is usually asso-
ciated with the memory access pattern. Ideally, consecutive
threads in a warp ask data from consecutive locations in the global
memory space that are within one 128-Byte segment. Under this
circumstance, the warp only takes one memory transaction to
fetch 32 single-precision floating point data for its 32 threads,
and the global load transactions per warp request is 1. In
ARCHERGPU, access to the cross-section data is highly irregular,
and repeated, expensive memory transaction has to be conducted
to feed all the threads in a warp, causing a performance
downgrade.

For the Intel Xeon Phi coprocessor, the limiting factor is that the
distinctive vectorization feature has not yet been efficiently used.
Specifically, each core of the coprocessor has a vector processing
unit (VPU) with 512-bit wide registers for the single instruction
multiple data (SIMD) operations (Intel, 2013c) However, the con-
ventional history-based MC algorithm currently adopted in
ARCHERCOP makes it difficult to directly benefit from that feature.
There is very limited room for vectorization. One way is to rely
on the compiler-driven automatic vectorization. The other is the
+08 1.0E+09 1.0E+10

tons simulated

over the accuracy of the lung dose in a simulated chest scan.

l region of the RPI-Adult male obese phantom (142 kg) using 107 photons.

Value

anches 92.35%
p to the maximum number of threads per warp supported on a 15.69%

nsactions performed for each global memory load 2.6
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manual vectorization by adding the compiler directives, such as
#pragma ivdep to the loop structures which should not have data
dependencies. Both methods only apply to a limited number of
inner for-loops in the MC transport kernel and do not lead to
appreciable performance improvement. A potential future direc-
tion is to implement the vectorized MC algorithm (Brown and
Martin, 1984) on the coprocessor.

5. Conclusions

In this paper, we presented the development of a new Monte
Carlo-based code ARCHER-CT for fast CT imaging organ dose calcu-
lations on heterogeneous computing systems. The code has three
components, ARCHERCPU, ARCHERGPU, and ARCHERCOP that are
designed to be run on the multi-core CPU, Nvidia GPU and Intel
Xeon Phi coprocessor, respectively. The latter two are collectively
called hardware accelerators.

ARCHER-CT contains a validated GE multi-detector CT scanner
(LightSpeed 16 Pro) model and a library of computational human
phantoms such as VIP-Man, RANDO, RPI-Pregnant women with 3,
6 and 9 months of gestation, ten extended RPI-Adult females and
males representing patients of different BMIs.

To make a reasonable, objective comparison, much effort has
been made to optimize the three codes to maximize the perfor-
mance on their specific architectures. ARCHERCPU written in MPI-
OpenMP hybrid is tested using 12 threads; ARCHERGPU written in
CUDA C launches approximately 8000 active threads at runtime;
ARCHERCOP written in MPI-OpenMP uses 240 threads. Further-
more, the CPU has the hyperthreading function enabled to increase
the performance, and the hardware accelerators are configured to
work in the server mode with ECC enabled. The same random
number generator and similar compiler options are used in the
three codes.

In the accuracy and performance tests, three inhomogeneous
phantoms are used: RPI-Pregnant woman (9-month), RPI-Adult
female obese phantom (122 kg) and RPI-Adult male obese phan-
tom (142 kg). Absorbed doses to individual organs/tissues are cal-
culated and are found to be in excellent agreement with the
production code MCNPX. While significantly faster than the paral-
lel MCNPX run with 12 MPI processes, it is observed that the per-
formance of ARCHERGPU and ARCHERCOP are 5.15–5.81 and 3.30–
3.38 times faster than the parallel ARCHER-CTCPU. The GPU code
outperforms the coprocessor code in all three test cases. It is ben-
eficial to make CPU work concurrently with the GPU and coproces-
sor, and the performance gain is found to be 13–18%.
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