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The Monte Carlo radiation transport community faces a number of challenges associated with peta- and
exa-scale computing systems that rely increasingly on heterogeneous architectures involving hardware
accelerators such as GPUs and Xeon Phi coprocessors. Existing Monte Carlo codes and methods must
be strategically upgraded to meet emerging hardware and software needs. In this paper, we describe
the development of a software, called ARCHER (Accelerated Radiation-transport Computations in
Heterogeneous EnviRonments), which is designed as a versatile testbed for future Monte Carlo codes.
Preliminary results from five projects in nuclear engineering and medical physics are presented.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Hardware accelerators that emerged in recent years have
become increasingly popular for high performance computing
(HPC). Such hardware facilities include Nvidia and AMD’s graphics
computing units (GPUs) and Intel’s many-integrated-core (MIC)
architecture based coprocessors. With high energy efficiency and
strong computing power, these accelerators are being used in
HPC facilities including both workstations and supercomputers.
The accelerators work together with the traditional central pro-
cessing units (CPUs) and give the system additional performance
boosts. Systems consisting of both CPUs and hardware accelerators
belong to the so-called ‘‘heterogeneous architectures’’.

As of June 2013, four out of the top ten supercomputers on the
Top500 list (TOP500, 2013) use the heterogeneous design involving
either GPUs or coprocessors. Tianhe-2, the No. 1 supercomputer,
has 32,000 Intel Xeon E5-2692 12-core CPUs and 48,000 Intel Xeon
Phi 31S1P coprocessors to claim a peak performance of 54,902
Tflops. Fallen behind is the No. 2 supercomputer, Titan, which uses
560,640 AMD Opteron 6274 16-core CPUs and 261,632 NVIDIA
K20x GPUs to reach its peak performance of 27,112 Tflops.
It is likely that the exa-scale computing era, which will arrive by
the end of this decade, must utilize a drastically new architecture.
However, none of the production Monte Carlo (MC) radiation trans-
port codes widely used by the nuclear engineering and radiology
communities was designed to take advantage of today’s heteroge-
neous computers. One challenge has to do with the sometimes pro-
hibitively large amount of time required to port an existing MC code
to the new hardware platform. Given the uncertainty associated
with the final hardware/software specifications of the exa-scale
supercomputer systems, most software developers and end-users
are reluctant to play an active role in the ‘‘co-design’’ process.

Only a handful groups have managed to make breakthroughs in
designing new, GPU-based MC codes. For example, (Badal and
Badano, 2009) developed MC-GPU for radiographic projection
and CT dose calculations, and reported a speedup factor of 110 over
general-purpose MC code PENELOPE (Baro et al., 1995). Jia et al.
(2011) developed gDPM based on the dose planning method
(DPM) (Sempau et al., 2000) and found a speedup factor of 69.1–
87.2 over the original DPM package on CPU. Hissoiny et al.
(2011) developed GPUMCD for coupled electron-photon transport
and reported a speedup factor of 1200 for electron beams and a
speedup factor of 940 for photon beams when compared with a
production code, EGSnrc. Ding et al. (2011) and Liu et al.
(2012b,c) reported the GPU-based MC code for X-ray CT dosimetry
using a validated CT model. The initial test code was found to be
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19 times faster than the corresponding CPU code and 42 times fas-
ter than the general-purpose MC code MCNPX (Pelowitz, 2011).
Jahnke et al. (2012) developed GMC based on the general purpose
MC code, Geant4 (Carrier et al., 2004), and observed a speedup fac-
tor of 4860 for the GPU code compared to Geant4. Recently Chen
et al. (2012) implemented a fast MC tool for dose calculations
and reported that the GPU code is 55 times faster than the
single-thread CPU code for a thorax phantom CT scan.

GPU-based MC methods have also been applied to other types
of particles in nuclear and medical applications. Nelson and
Ivanov (2010) studied the neutron transport problem on GPUs
and reported a speedup factor of 23 with single precision floating
point. Heimlich et al. (2011) calculated the penetration probability
of a neutron beam incident on a homogeneous 1D slab, and
reported a speedup factor of 125 times to a single-core CPU. Liu
et al. (2012a) studied the neutron eigenvalue problem for a bare
sphere core and a binary slab system, and reported a speedup fac-
tor of 7 and 33.3 for two geometry configurations, respectively.
Other groups have developed the GPU-based MC code for proton
calculations. Yepes et al. (2010) implemented a GPU code GFDC
using the track-length algorithm for proton dose calculations and
observed a speedup factor of 75 with respect to the CPU-based
code FDC. Su et al. (2012) studied the proton beam depth dose in
a 3D water phantom and reported the GPU code is 57 times faster
than the CPU implementation. Jia et al. (2012) developed gPMC for
proton dose calculations in radiotherapy and found the typical
computation time ranges from 6 s to 22 s instead of several hours
using CPU-based code.

The effort made by the MC community, however, is still at an
early stage. Several problems have been found in most existing
studies: relatively simple physics models were often used and
the effects of using more realistic physics on GPU speedup factors
were not carefully investigated. Furthermore, different physics
models and optimization levels were often used for CPUs and
GPUs, resulting in unfair performance comparisons. Finally, the
Intel Xeon Phi coprocessors, which became available recently as
a hardware accelerator comparable to GPUs, has not been adopted
for MC based radiation transport simulations.

In this paper, we describe the development of a software test-
bed, called ARCHER (Accelerated Radiation-transport Computa-
tions in Heterogeneous EnviRonments). The paper first discusses
basic design features, followed by examples of using ARCHER for
various test cases. Fig. 1 illustrates the long-term vision of ARCHER
as a comprehensive Monte Carlo software testbed, using the novel
Fig. 1. The vision of ARCHER as a research tool to study MC simulations on a variety
of hardware platforms including CPUs, GPUs and coprocessors as well as software
tools including MPI, OpenMP, CUDA for diverse applications ranging from nuclear
reactor engineering to medical/health physics.
computing hardware and advanced programming models to speed
up Monte Carlo calculations. Currently we employ ARCHER as a
versatile research tool to evaluate the performance of Nvidia’s
GPU and Intel’s coprocessor. Eventually, ARCHER can evolve into
a suite of MC codes with the possibility of being compatible with
most existing and next-generation exa-scale supercomputers.
2. Methods

As an MC-based code, ARCHER currently can simulate the trans-
port of photon, electron and neutrons in 3D heterogeneous media.
2.1. Photon transport

ARCHER simulates Rayleigh scattering, photoelectric effect,
Compton scattering, and pair production for photons ranging from
1 keV to 20 MeV.

For performance comparison, three physics models with differ-
ent complexity levels were developed: (1) Detailed physics, where
atomic form factors are used to account for electron’s binding
effects over energy and angular distribution, and the attenuation
coefficients are calculated from raw microscopic cross sections
on the fly. (2) Simple physics, where atomic form factors are
ignored and pre-tabulated cross section data are used for
efficiency. (3) Combo physics, where the material attenuation
coefficients are calculated by using pre-tabulated cross section
data. The difference from the simple physics mode is that the polar
angles in the coherent and incoherent scattering interactions are
sampled directly by using pre-calculated tables that take into
account the effects of form factors.

Photon transport simulations are used in a variety of applica-
tions including CT dose calculations and radiotherapy treatment.
A dedicated module called ARCHER-CT is developed to perform fast
and accurate dose calculation for CT scan simulations. In ARCHER-
CT, only low energy (E 6 140 keV) photons are transported in
computational human phantoms while secondary electrons are
assumed to deposit their energy locally. This is valid because the
Continuous Slowing Down Approximation (CSDA) range for
electrons in the energy range considered is generally one order
of magnitude smaller than the dimension of a phantom voxel.

A family of voxelized computational human phantoms were
incorporated in ARCHER-CT, including RPI Pregnant Women and
RPI-Adult Males and Adult-Females with different body weights,
as shown in Fig. 2 Ding et al., 2012.

The CT scanner model used in ARCHER-CT was originally defined
by Gu et al. (2009) in MCNP input data format for a 3rd-generation
GE LightSpeed 16 multi-detector CT scanner. The scanner model,
which includes a curved X-ray source surface and a bowtie filter,
was then hardcoded into ARCHER-CT. The code supports several
predefined scan protocols including helical or axial scan modes,
beam collimations of 1.25, 5, 10, or 20 mm and kVps of 80, 100,
120 or 140.

Organ doses are tallied using the collision estimator. In general
there are two methods to update the estimator. The first is called
the atomic operation in which multiple threads attempting to
increment the estimator located in one memory location are serial-
ized to ensure a correct result. We used the second method, in
which each thread keeps its own local dose array and the final dose
results are obtained by summing over the corresponding local dose
array elements. This approach effectively avoids the loss of accu-
racy that has been observed in the first method when a large num-
ber of photons (�108) are simulated and a small number of organs
(�10–100) are tallied (Liu et al., 2013).

For performance comparison, a CPU-based code, ARCHERCPU, is
first developed as a basis. The shared memory model OpenMP is



Fig. 2. Phantoms available in ARCHER. (a) RPI-Adult Females with body weights of 60, 74, 89, 100 and 122 kg. (b) RPI-Adult Males with body weights of 73, 86, 103, 117 and
142 kg.
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adopted to fully utilize the tested multi-core CPU. Two variants of
the code, ARCHERGPU and ARCHERMIC, are developed specifically for
the GPU and Intel MIC architectures. The serial code, including sim-
ulation scheduling, IO and user interactive parts is executed on the
CPU. The photon transport kernel is delivered to GPUs and MICs for
parallel execution using NVIDIA’s CUDA C (NVIDIA, 2012) language
and the Intel’s OpenMP offload programming model, respectively.
When the code is executed, the host code first reads in the geom-
etry, cross-section and other user-defined parametric data and
stores them in the host memory. It then selects an accelerator
device, allocates memory on the device, and copies the data over.
The host CPU then issues a command to the device to initiate the
parallel transport simulation. Once the simulation is done, the dose
results are transferred back to the host memory for further analysis
and reporting.

Cross-section tables are stored in the texture memory to take
advantage of the hardware-supported linear interpolation opera-
tions. Patient phantom data and tally arrays are kept in the global
memory on device, while physical constants shared by all threads
are kept in the constant memory.

One goal of the study was to carry out a fair performance com-
parison between multi-core CPU, GPU and coprocessor. To this end,
we adopted the exactly same physics models, single floating point
format and similar compiler options for different platforms.
Besides, the same random number generator Xorshift (Marsaglia,
2003) was used in all the three code variants.

It is noticed that single precision (SP) floating point arithmetic
is sufficient for CT dose calculations. For three variants of the codes,
similar compiler options were applied for floating point arithmetic:
‘‘-ffast-math’’ for the CPU, ‘‘-use_fast_math’’ for the GPU, and
‘‘-fp-model fast = 2’’ for the coprocessor. For the CPU code, we used
OpenMP to run multiple threads on a multiple-core CPU to make
full use of its computing capability. Hyper-threading (HT) is
enabled on the CPU which leads to an immediate 40% performance
boost compared to the CPU code running the HT-disabled CPU.
2.2. Electron transport

Electron transport in ARCHER (Su et al., 2013) is based on the
class-II condensed history method and continuously slowing down
approximation. Møller scattering and Bremsstrahlung are modeled
for interactions of certain energy-loss threshold.

Below the threshold, the energy losing is treated with CSDA. The
effect of large number of elastic interactions in a given pathlength
is modeled by Goudsmit and Saunderson (GS) multiple scattering
theory (Goudsmit and Saunderson, 1940). Sempau’s implementa-
tion (Sempau et al., 2000) is used to enable the electron to trans-
verse multiple voxels in a single step, which speeds up the
simulation significantly. The coupled electron-photon transport is
handled explicitly; that is, all secondary particles produced in the
primary particle transport are transported like primary particles.
2.3. Neutron transport

Neutron transport in ARCHER is currently limited to the calcu-
lation of the eigenvalue defined as the ratio of the number of
fission neutrons in one generation to that in the previous genera-
tion. Our study considered two simple geometries: a bare spherical
core and a binary slab system. One-speed model was used for
elastic scattering, fission and capture. The absorption process was
simulated using non-analog method. Weight-window technique
composed of splitting and Russian roulette was employed to
ensure the neutron always had an appropriate weight value.
Collision and path-length estimators (kcol, kpath) were used to
evaluate eigenvalues in each generation. The convergence of eigen-
value and fission source distribution was achieved by simulating a
total of 1000 generations (the first 200 were inactive).

The GPU-based neutron code for eigenvalue calculations were
developed using NVIDIA’s CUDA C. The flowchart of the GPU-based
code is shown in Fig. 3.

Recently we have developed an event-based vectorized MC
code for the neutron eigenvalue calculations to investigate its
effectiveness in solving the branch divergence problem on GPUs
(Du et al., 2013).

The flow chart of vectorized MC method as implemented in
ARCHER is shown in Fig. 4. We keep two particle stacks for storing
the neutrons being simulated in the current batch. One stack,
called F, is used to store neutrons that will undergo the flight anal-
ysis. The other one, called C, is used to store neutrons that will
undergo the collision analysis. In the beginning, we put all the ini-
tial neutrons into the F stack, and perform the flight analysis for all
the neutrons. After distance sampling, those neutrons that will tra-
vel without crossing medium interfaces will be stored in the C
stack for later collision analysis, and those that travel across med-
ium interfaces will move to the interface position and stay in F
stack for another flight analysis. This process is repeated until
the F stack is empty, when the collision analysis is executed for
all neutrons in the C stack. At this point, a shuffling operation is
applied to stack C to remove neutrons that are out of region of
interest (ROI) and only keep survived ones for the collision analy-
sis. Neutrons with weight values below some critical value after
collision will be removed following a sampling process. The
survived neutrons then enter the next loop of analysis.

By doing these iterative operations, we guarantee that all the
neutrons being processed at the same time are undergoing the
same physical events and involving the same sequence of instruc-
tions. This means that once the method is implemented on GPUs
with each thread simulating one or more particles, all of the 32



Fig. 3. Flowchart for the GPU-based eigenvalue calculation code.

Loop for Batches 1 … N
. 
. While  length(C) > 0
. . 
. . While  length(F) > 0
. . . Free Flight
. . . Shuffle F
. . . Boundary Crossing Check
. . . Shuffle F
. . . . . . .
. . 
. . Shuffle C
. . Collision
. . Shuffle C
. . . . . .
. 
. . . .

Fig. 4. Simplified flowchart of GPU-based vectorized MC algorithm implemented in
ARCHER.
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threads within a warp will be executing the same instructions and
the thread divergence does not occur. Different events are then
executed iteratively in a sequential order until the storage stack
becomes empty. Note that with the event-based method, there is
no one-to-one correspondence between the particle history and
GPU thread, since different portions of one particle history may
be executed by different threads for the events within that history.

3. Applications and results

3.1. X-ray CT imaging dose

ARCHER was used to simulate X-ray CT imaging involving a
modern multiple-detector CT scanner. ARCHER is coupled with a
family of voxelized human phantoms for organ dose calculations.
The main goal of this project is to test the feasibility of running
an MC simulation for a CT protocol in ‘‘near real-time’’ with the
aid of hardware accelerators.

We tested ARCHER-CT for a CT scan simulation using an abdo-
men phantom converted from the clinical CT images for a prostate
cancer treatment (Ding et al., 2010) at Massachusetts General Hos-
pital (MGH). To build the voxelized patient anatomical model, the
contours of the tumor target (prostate) and other organs including
rectum, bladder and femoral heads on CT images were designated
by a radiation oncologist, and then combined to construct the vox-
elized phantom. The phantom contains 218 � 126 � 60 voxels
with a voxel size of 1.954 � 1.954 � 5 mm3. Ten organs including
prostate, rectum, bladder, bone and soft tissues are explicitly mod-
eled. The CT images and a 3D vision of the constructed phantom
are shown in Fig. 5.

The CT scan protocol is as follows: 20 mm collimation, 120 kVp
beam and helical scan mode with a pitch of 1.375. A total of 108

photons were simulated for reaching satisfactory statistical preci-
sions. Three variations of ARCHER-CT, including the CPU, GPU
and MIC codes, were used respectively to calculate the doses for
9 organs. Combo physics mode was used for achieving both fast
and accurate dose results. To validate the calculation, we compared
the results with MCNPX (v2.5.0) using the exactly same simulation
setup and tally card type 6 (F6: P). This can serve as an accuracy
benchmark as the latter has been extensively validated in a wide
range of applications including medical physics and nuclear
engineering.

We obtained almost the same organ dose results from three
code variants of ARCHER-CT, which is expected since the same
algorithms were used by the codes. In Table 1 we show the organ
dose results from the GPU version of ARCHER-CT and MCNPX as
well as the percentage difference diff between the center values
of corresponding results:

diff ¼ DOSEARCHER-CT � DOSEMCNPX

DOSEMCNPX
� 100% ð1Þ

It can be seen that the results from ARCHER-CT agree with
results from MCNPX very well. For all the organs, the percentage
differences from MCNPX are less than 2%. On the other hand, the
differences are still considerably larger than the statistical errors
of MCNPX results which are generally less than 0.5 percent. The
discrepancy is presumably due to the approximations we made
for various physics models and the absence of more detailed phys-
ics interactions like fluorescence. However, the accuracy achieved
by ARCHER-CT is already sufficient for medical applications.

The simulation time of ARCHER-CT and MCNPX is listed in
Table 2, from which it can be seen that all code variants of
ARCHER-CT are significantly faster than MCNPX. In particular, the
GPU code only takes 6.8 s to do the whole simulation while MCNPX
takes 183 min. The GPU and MIC codes are seven times and twice,
respectively, faster than the OpenMP based parallel code on CPU.
There are several reasons why ARCHER-CT is many times faster
than MCNPX: (1) MCNPX is a general purpose MC code which is
designed to deal with complex physics models and complex geom-
etry, thus the code complexity is also high. (2) Improved photon
transport algorithms in ARCHER-CT, such as the use of cross
section lookup tables, Woodcock delta tracking and fictitious cross
section tables, make the simulation faster. (3) Emergent computing
hardware facilities like the GPU and MIC provide significant
computing power and further speed up the simulation.

To test the accuracy of ARCHER-CT, benchmark tests were
performed against the production code, MCNPX which was run
on Intel Xeon X5650 2.66 GHz CPU using a single thread. For a
whole-body CT scan (142-kg RPI Adult Male and Obese Phantom,
120 kVp, 20 mm beam collimation and a pitch of 1), a total of
9 � 108 photons were simulated. Using single precision calcula-
tions and detailed physics, the average difference in organ doses



Fig. 5. (a) A patient-specific CT image for prostate cancer treatment. (b) The 3D vision of the constructed patient anatomy from segmented CT images.

Table 1
Organ dose results for the CT scan simulation with a clinical case based phantom. The
first to third columns are MCNPX results, MCNPX relative standard deviation (RSD)
and ARCHERCT results, respectively. The last column is the percentage difference
between the results of ARCHER-CT and results for MCNPX.

Organ MCNPX MCNPX RSD ARCHER Diff

Anterior rectum 2.51E�07 0.40% 2.49E�07 �0.70%
Posterior rectum 2.70E�07 0.40% 2.72E�07 0.74%
Rectum 2.56E�07 0.39% 2.53E�07 �1.19%
Prostate 2.09E�07 0.32% 2.10E�07 0.46%
Bladder 2.71E�07 0.24% 2.72E�07 0.25%
Femoral head LT 5.02E�07 0.30% 5.00E�07 �0.48%
Femoral head RT 4.97E�07 0.30% 4.93E�07 �0.79%
Bone 4.68E�07 0.07% 4.63E�07 �1.13%
Soft tissue 3.11E�07 0.03% 3.06E�07 �1.56%

Fig. 6. Central axis depth dose curve and ARCHERGPU/EGSnrc dose ratios of 20 MeV
monoenergetic monodirectional parallel electron beam incident perpendicular to
the x–y plane. Note that at the dose distal area (near z = 10 cm) the statistical error
is in the order of 10%, which is comparable to the difference between ARCHERGPU

and EGS.
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from ARCHERGPU and MCNPX was found to be 0.38%. Using simpli-
fied physics, the difference was found to be 1.9%, which is still
excellent. With combo physics mode, the average difference is
about 0.3%.
3.2. Electron transport

We tested the electron transport part of ARCHER in a heteroge-
neous slab geometry phantom. The phantom is a 30 � 30 � 30 cm3

cube with voxel size of 0.5 � 0.5 � 0.2 cm3. Along z axis, there are
three levels: 2 cm water, 1 cm aluminum and 37 cm water. The
source used in simulation is 20 MeV monoenergetic monodirec-
tional parallel electron beam incident perpendicular to the x–y
plane with a field size of 3.0 � 3.0 cm2. A total of 6 � 106 histories
were simulated. The depth dose of the central axis and lateral dose
of different depth (z = 1 cm, z = 4.8 cm, z = 7 cm) were tallied and
compared.

For comparison, we performed the same simulation using pro-
duction MC code MCNPX and EGSnrc/DOSXYZnrc (Kawrakow and
Rogers, 2000). The cutoff energies for electron and photon for all
simulations are set to 200 keV and 50 keV, respectively. The results
from MCNPX are very close to those from EGSnrc; for clarity only
the latter are plotted here. Fig. 6 shows the central axis depth dose
comparison. Fig. 7 illustrates the lateral dose for different depth.

It can be seen from Fig. 4 that at high dose region the ARCHER
results are very close to EGS (within 1%). While the dose decreases
with depth, the statistical error increases. At z = 10 cm the statisti-
Table 2
Simulation time (in seconds) of ARCHER-CT and MCNPX for the prostate phantom CT
scan with 108 photon histories.

Code ARCHERCPU

12 threads
ARCHERGPU ARCHERMIC MCNPX 12 threads

Time (s) 46.4 6.8 21.2 1.1 � E + 4
cal error is about 10%, which is comparable with the difference
between ARCHERGPU and EGS. All the voxels with doses greater
than 50% of the dose maximum have statistical errors less than
1%. The difference between ARCHERCPU and ARCHERGPU is within
0.5% of the dose maximum (comparable with statistical error),
which means that the adoption of single precision in ARCHERGPU

does not introduce measurable error. Meanwhile, a very good
agreement is observed between ARCHER and EGSnrc: For 99.1%
voxels the difference of dose results between ARCHERGPU and
EGSnrc is within 2% of the dose maximum.

The time used for simulating 6 million electrons is shown in
Table 3. Note that the time listed here is the GPU kernel execution
time, which excludes the I/O time on the host (2�3 s and most of it
is spent on reading phantom geometry). The results show that
ARCHERGPU running on one NVIDIA M2090 GPU card is 4.3 times
faster than ARCHERCPU running on one Intel X5650 CPU with 6
threads (six cores used). With six GPU cards, the simulation of
6 � 106 electrons can be done within 2 s, compared with 9213 s
in MCNPX and 1645 s in EGSnrc, with single thread used. Besides
the acceleration from the usage of GPUs, there are two other
reasons why EGS and MCNPX are much slower than ARCHERGPU.
First, as general purpose codes, MCNPX and EGS have complicated
code structures which handle a variety of application scenarios;
this brings in some execution overhead. ARCHER is designed for
medical use only and it is more concise and more efficient. Second,
MCNPX and EGS employ more detailed physics models than
ARCHER does, such as Doppler broadening and X-ray fluorescence.
However, the relative simple physics models we used turn out to
give sufficiently accurate results for most medical applications as
shown above.



Fig. 7. Lateral dose curve at different depth of 20 MeV monoenergetic monodirec-
tional parallel electron beam incident perpendicular to the x–y plane.

Table 3
Simulation time comparison for 6 million 20 MeV electrons incident on water-
aluminum-water phantom.

Code used Time [second] Particles simulated per second

MCNPX 9213 6.51E+02
EGSnrc 1645 3.65E+03
ARCHERCPU 31.6 1.90E+05
ARCHERGPU (1 card) 7.33 8.19E+05
ARCHERGPU (6 cards) 1.94 3.09E+06

Table 4
Performance comparison between different transport codes in ARCHER.

Code Computation time [sec] Speedup

ARCHERCPU 6077.5 1
ARCHERGPU (history-based) 208.1 29.2
ARCHERGPU (vectorized) 2278.9 2.7
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3.3. Reactor eigenvalue calculations

ARCHER was applied to a neutron eigenvalue problem for
nuclear reactor analyses. Here we present the results for a binary
slab geometry setup where fuel and moderator are distributed
alternatively. The parameters of the fuel slabs were:
Rf = 0.01 cm�1, Ra = 0.02 cm�1, Rt = 0.1 cm�1, m = 2.5, Dx = 3.8 cm,
and the parameters of the moderator slabs were: Ra = 0 cm�1,
Rt = 0.1 cm�1, Dx = 10.0 cm. The parameters were assigned such
that the eigenvalues would finally be close to 1. A total of 106 ini-
tial neutron histories and 1000 generations were simulated by the
CPU and GPU codes respectively. Double precision floating point
arithmetic was used for guaranteeing the computation precision.

ARCHERCPU was run in serial mode using a single thread on an
Intel Xeon X5650 CPU, while ARCHERGPU was run on a NVIDIA
Tesla M2090 GPU card. For the whole simulation, ARCHERCPU

takes 6077.5 s to finish and ARCHERGPU takes only 208.1 s. The
GPU-based code is nearly 30 times faster than the CPU-based
one. This shows the efficiency of using GPUs in accelerating the
MC simulations for neutron transport.

3.4. Vectorized MC algorithms for GPUs

ARCHER was used to compare history-based and event-based
MC algorithms for a neutron eigenvalue problem on GPUs. The
geometry considered here is a heterogeneous 1-D system that con-
sists of alternately distributed fuel and moderator slabs. A total of
10 fuel slabs and 11 moderator slabs are modeled. For simplicity
we use the one speed approximation in our MC implementation.
Three physical processes, elastic scattering, fission and capture,
are being considered for each neutron history in the simulations,
where the last two are regarded as absorption. The cross sections
of each reaction are set such that the resulting eigenvalue is close
to one. Specifically, we use RF = 0.034 cm�1, RA = 0.08 cm�1,
RT = 0.1 cm�1, m = 2.5, Dx = 3.8 cm for the fuel, and RA =
0.0001 cm�1, RT = 0.1 cm�1, Dx = 30.0 cm for the moderator.
The kernel block size was set to be 256, and the number of neu-
trons simulated by each thread was 100. The grid size was then
determined by dividing the total number of neutrons to be handled
for the current kernel by 25,600. The values of these parameters
were chosen so that the GPU code performance was optimum for
our particular setup.

In Table 4, we show the running time of three different codes
and the speed up factors relative to the CPU result. The ARCHERCPU

code was tested on an Intel Xeon X5650 2.66 GHz CPU with 13G
DDR3 memory. Only a single CPU thread was used and the code
was run in sequential mode. The ARCHERGPU codes were tested
on a NVIDIA Tesla M2090 GPU card.

The GPU-based vectorized Monte Carlo code, ARCHERGPU (vec-
torized), was found to be slower than its conventional GPU coun-
terpart, ARCHERGPU (history-based), by a factor over 10. To find
out the cause of the downgraded performance, the GPU execution
statistics per neutron generation were collected and analyzed by
using a profiling tool NVPROF. Fig. 8 displays the warp execution
efficiency data of each kernel function, which is defined as the
average number of active threads in a warp divided by the total
number of threads in a warp (32). The magenta and green bars rep-
resent the GPU profiling data for conventional and vectorized algo-
rithms, respectively. Numbers in the square brackets denote the
number of times that each kernel is launched. The kernels that
are used to initialize fission sites and neutron weights prior to
the simulation of each generation in the conventional and vector-
ized codes are functionally the same; hence a similar efficiency.
Except for that, all the kernels of the vectorized code have a higher
efficiency than the single large transport kernel of the conventional
code, because of the effectively decreased occurrence of divergent
branches.

However, the advantage of higher warp execution efficiency is
completely offset by the highly increased global memory transac-
tion, as is illustrated in Fig. 9. Following the same convention, we
use magenta and green bars to represent data for conventional
and vectorized algorithms, respectively, and indicate the kernel
launch counts in the square brackets after each kernel. Unlike in
the conventional code where the neutron attribute data such as
position, direction, energy, weight, etc. are created and consumed
in the fast on-chip register space, in the vectorized code, they have
to be frequently read from and written to the slow off-chip global
memory, which is known to have a high access latency. For the
problem considered in this study, the total global memory
throughput per neutron generation of the vectorized code is on
the order of 200 GB, which is �60 times larger than that of the con-
ventional code. The dramatically increased number of global mem-
ory transactions causes large amount of latencies on the GPU and
makes the vectorized MC code much slower than the conventional
one, although the former gives better warp execution efficiency.

Based on the test runs and profiling results, we can draw the
preliminary conclusion that vectorized MC algorithm is probably
not well suited for running on modern GPUs and the main reason
is the high latency of global memory access. The requirement for
frequent memory reading/writing is to a large extent intrinsic to
the vectorized algorithm, so latency is most likely to continue to
be a major issue for any effort of porting vectorized MC code to
GPUs.



Fig. 8. Warp execution efficiency of kernel functions. Magenta and green bars
represent the data for history-based and vectorized ARCHERGPU codes, respectively.
Numbers in the square brackets denote the number of times that the kernel is
launched. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. Global memory throughput of kernel functions. Magnetic and green bars
represent the data for history-based and vectorized ARCHERGPU codes, respectively.
Number in the square bracket denotes the times that the kernel is launched. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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4. Conclusion

Although still in its early stage of development, ARCHER has
shown the utility as a versatile testbed for research in Monte Carlo
software design under various emerging heterogeneous computing
architectures. Preliminary tests for selected nuclear and radiologi-
cal engineering problems focused on potential accelerations
brought by ARCHER in comparison with general-purpose MC codes
such as MCNP and EGSnrc. The performance comparison results
showed that significant speed up can be achieved by using
hardware accelerator such as GPUs and Intel coprocessors for MC
radiation transport simulations. In general, the GPU-based code
running on a NVIDIA Tesla M2090 and the MIC-based code running
on an Intel Xeon Phi 5110p are 5–8 times and 2 times, respectively,
faster than the OpenMP code running on an Intel Xeon X5650 CPU.

On the other hand, the actual performance of GPU and Intel Phi
coprocessor is significantly lower than the theoretical peak perfor-
mance. This is due to several reasons:

1. On GPUs the main issue is the problem called branch diver-
gence: On the GPU, threads are split into groups called
warps. Each warp contains 32 threads and executes one
common instruction concurrently. Highest performance
will be achieved if all the 32 threads of a warp agree on
their execution path. If threads diverge at a certain
data-dependent conditional branch, the warp will sequen-
tially execute each branch. This phenomenon is called
thread divergence. Because MC contains a large amount
of conditional branches and which branch for a thread to
enter is randomly selected, thread divergence becomes an
inevitable problem affecting the overall performance.

2. Another factor affecting the efficiency is the memory
latency. On GPUs, most of the data are put into the global
memory due to their relatively big size. While being large
in capacity, global memory has relatively high latencies
compared with other memories such as registers and the
shared memory. The data fetching and writing operations
take long time to finish, and computation units have to wait
for data to be ready, resulting in a low computing effi-
ciency. On MICs, the similar case happens where the cores
need to go through a loop topology to access the data in
global memory, which takes long time for cores far from
the memory.

3. The vector computing power of GPUs and MIC are not fully
exploited. GPUs adopt the Single Instruction Multiple
Threads (SIMT) architecture which is very similar to the
Single Instruction Multiple Data (SIMD) architecture used
by vector computers. Specially designed vectorized
algorithms are needed to maximize the GPU performance.
On MICs, each core is equipped with a 512-bit SIMD unit,
making the whole card a powerful vector processor. One
may rely on the compiler to utilize these SIMD units by
using compiling options to automatically vectorize certain
parts of the code. However, the effectiveness of such
vectorization is often very limited. In order to take full
advantages of the computing power of vector units, vector-
ized algorithms and dedicated SIMD programming are
required. In ARCHER-CT, we used conventional history
based algorithms for most applications and thus did not
exploit the vector computing power of GPUs and MICs.
For the neutron eigenvalue problem, we implemented an
event-based vectorized MC algorithm for the eigenvalue
problem, and found that its performance is even worse
than the history-based algorithm. Based on the test runs
and profiling results, we found that the main reason is
the high latency of global memory access. The requirement
for frequent memory reading/writing is to a large extent
intrinsic to the vectorized algorithm, so latency is most
likely to continue to be a major issue for any effort of
porting vectorized MC code to GPUs.

There are possibilities to alleviate the global memory latency
problem and improve the performance of the GPU code. First, in
the flight analysis step, we keep executing the flight kernel until
all of the neutrons enter the collision stack. As this process goes,
the number of active neutrons simulated in the flight kernel is
continuing to decrease and it could be well below one million for
the last several flight kernel executions. In our GPU code, we
always use a block size of 256 and let each thread simulate 100
neutrons, so if the total number of neutrons is only, say, tens of
thousands, there are merely several hundred active threads for
the GPU and they are much less than the maximal active concur-
rent threads on the Tesla M2090 card, which is 24576. The stream
processors (SM) in GPU are not fully occupied, resulting in a very
low efficient GPU usage. One possible solution is to adjust the block
size and the number of neutrons per thread dynamically according
to the current total number of neutrons being simulated to guaran-
tee enough number of concurrent threads. We plan to implement
this feature in the newer version of our code. Secondly, because
the vectorized algorithms are effective in reducing thread diver-
gence, it may be beneficial to address the global memory access
problem directly. There are many ‘‘tried and true’’ programming
techniques to hide the latencies for memory access, and some of
those techniques may be useful for GPUs. For example, having sev-
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eral stacks for both free-flight and collision operations may permit
fetching one stack from memory while the GPUs are operating on
another stack. Techniques such as prefetching, read-ahead/
write-behind, asynchronous access, etc., have proven effective for
conventional CPUs and may be effective in latency hiding for the
GPU global memory access. These programming techniques,
however, further complicate the Monte Carlo algorithms and
may be highly dependent on relative speeds of specific hardware.

All these applications and interesting findings have allowed us
to identify research issues that need to be further investigated.
ARCHER is being refined by adding new features that are expected
to lead to new Monte Carlo algorithms under various hardware/
software platforms.
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